|
|
Temporal Networks: Concept, Application, and Perspective |
Wu Jiang1,2,3, Yu Yang1,2, Ding Honghao1,2, Tao Chengxu1,2, Zuo Renxian1,2, He Chaocheng1,2,3,4 |
1.School of Information Management, Wuhan University, Wuhan 430072 2.Center for E-commerce Research and Development, Wuhan University, Wuhan 430072 3.Wuhan Institute of Data Intelligence, Wuhan 430072 4.Wuhan University Shenzhen Research Institute, Shenzhen 519057 |
|
|
Abstract As a representation that captures dynamic interactions, temporal networks can provide an accurate depiction of dynamic systems in fields such as network public opinion and scientific collaboration. Because the application of temporal networks in these areas is in its nascent stage, this study systematically reviews the use of temporal networks in information science. First, a detailed introduction to the concept and research methods of temporal networks is provided. Specifically, their definitions are presented, metrics for structural types and output granularity are proposed, and the origins and development of temporal-network research methods are explained. Second, a keyword co-occurrence network and topic-clustering analysis is conducted on existing studies to identify the current research hotspots and application scenarios for temporal networks in information science. Third, based on existing application scenarios, this study analyzes the related findings in five areas of information science: scientific collaboration and scientometrics, medical informatics and health informatics, information recommendation and digital humanities, network public opinion and social media, and emerging technologies and smart cities. Finally, future research directions for temporal networks in information science are proposed from macro-, meso-, and micro-perspectives, thus providing insights for studies related to temporal networks in this domain.
|
Received: 15 April 2024
|
|
|
|
1 孟韬, 王维. 社会网络视角下的虚拟社区研究综述[J]. 情报科学, 2017, 35(3): 171-176. 2 杨永清, 王鑫磊, 张媛媛, 等. 舆情传播中社交网络圈群结构属性的影响机制研究[J]. 情报杂志, 2023, 42(7): 102-108. 3 Gao T C, Pan R, Wang S Y, et al. Community detection for statistical citation network by D-SCORE[J]. Statistics and Its Interface, 2021, 14(3): 279-294. 4 罗素平, 寇翠翠, 金金, 等. 基于离群专利的颠覆性技术预测——以中药专利为例[J]. 情报理论与实践, 2019, 42(7): 165-170. 5 李登杰, 翟东升, 冯秀珍, 等. 基于动态网络的石墨烯专利技术分析[J]. 情报杂志, 2015, 34(10): 52-58, 33. 6 Holme P, Saram?ki J. Temporal networks[J]. Physics Reports, 2012, 519(3): 97-125. 7 Viana M P, Amancio D R, da F Costa L. On time-varying collaboration networks[J]. Journal of Informetrics, 2013, 7(2): 371-378. 8 Huang H M, Shen H, Meng Z Q. Item diversified recommendation based on influence diffusion[J]. Information Processing & Management, 2019, 56(3): 939-954. 9 康旭东, 贾汐玥, 邓乐乐, 等. 基于全代引证网络的高影响力专利知识扩散特征研究[J]. 图书情报工作, 2022, 66(22): 83-94. 10 周静, 庄艳阳, 周季蕾. 基于文本语义与动态网络结构的科研合作网络链路预测研究[J]. 情报资料工作, 2022, 43(6): 21-29. 11 Guo T, Zhu X Q, Pei J, et al. SNOC: streaming network node classification[C]// Proceedings of the 2014 IEEE International Conference on Data Mining. Piscataway: IEEE, 2014: 150-159. 12 余韦, 章金楠, 朱梦丽, 等. 基于符号网络社团检测的舆情情报分析方法研究[J]. 情报杂志, 2022, 41(5): 55-60, 161. 13 Yu J T, Xiao B, Cui Y Z. A review of temporal network analysis and applications[C]// 3D Imaging—Multidimensional Signal Processing and Deep Learning: Images, Augmented Reality and Information Technologies. Singapore: Springer, 2023: 1-10. 14 张明智, 罗凯, 吴曦, 等. 时效网络及其应用研究[J]. 系统仿真学报, 2019, 31(4): 679-686. 15 Jiang J J, Wen S, Yu S, et al. Rumor source identification in social networks with time-varying topology[J]. IEEE Transactions on Dependable and Secure Computing, 2018, 15(1): 166-179. 16 Akimushkin C, Amancio D R, Oliveira Jr O N. Text authorship identified using the dynamics of word co-occurrence networks[J]. PLoS One, 2017, 12(1): e0170527. 17 洪成, 蒋沅, 严玉为, 等. 基于层间邻域信息熵的时序网络节点重要性评估方法[J]. 复杂系统与复杂性科学, 2024, 21(1): 20-27, 42. 18 Holme P. Modern temporal network theory: a colloquium[J]. The European Physical Journal B, 2015, 88(9): Article No.234. 19 Yang L, Chatelain C, Adam S. Dynamic graph representation learning with neural networks: a survey[J]. IEEE Access, 2024, 12: 43460-43484. 20 van Engelen J E, Hoos H H. A survey on semi-supervised learning[J]. Machine Learning, 2020, 109(2): 373-440. 21 Hamilton W, Ying R, Leskovec J. Inductive representation learning on large graphs[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates, 2017: 1025-1035. 22 魏静, 贾宇广, 朱恒民, 等. 基于认知失调的动态网络下用户观点演化研究[J]. 现代情报, 2023, 43(5): 104-113. 23 Wang J, Lee J J. Predicting and analyzing technology convergence for exploring technological opportunities in the smart health industry[J]. Computers & Industrial Engineering, 2023, 182: 109352. 24 Bai L, Yao L N, Wang X Z, et al. Deep spatial–temporal sequence modeling for multi-step passenger demand prediction[J]. Future Generation Computer Systems, 2021, 121: 25-34. 25 Jiao P F, Zhang X X, Liu Z H, et al. A deep contrastive framework for unsupervised temporal link prediction in dynamic networks[J]. Information Sciences, 2024, 667: 120499. 26 Ma Y H, Yang X M, Qu S, et al. Research on the formation mechanism of big data technology cooperation networks: empirical evidence from China[J]. Scientometrics, 2022, 127(3): 1273-1294. 27 Besednjak Vali? T, Kolar J, Lamut U. Fighting the big bad wolf of global trends: technology transfer between HPC centres and SMEs[J]. Digital Policy, Regulation and Governance, 2022, 24(6): 498-512. 28 李慧, 庞经纬, 孟玮. 基于专利知识流网络和图表示学习的技术机会链路预测研究[J]. 情报理论与实践, 2023, 46(7): 107-114, 149. 29 Cao G, Cui S M, Joe I. Improving the spatial–temporal aware attention network with dynamic trajectory graph learning for next Point-Of-Interest recommendation[J]. Information Processing & Management, 2023, 60(3): 103335. 30 赵文竹, 袁冠, 张艳梅, 等. 多视角融合的时空动态GCN城市交通流量预测[J]. 软件学报, 2024, 35(4): 1751-1773. 31 梁秀霞, 夏曼曼, 何月阳, 等. 基于时空多头图注意力网络的交通流预测[J]. 电子学报, 2024, 52(2): 500-509. 32 Lv L S, Bardou D, Hu P, et al. Graph regularized nonnegative matrix factorization for link prediction in directed temporal networks using PageRank centrality[J]. Chaos, Solitons & Fractals, 2022, 159: 112107. 33 Breiger R L, Carley K M, Pattison P. Dynamic social network modeling and analysis: workshop summary and papers[M]. Washington, D.C.: National Academies Press, 2003. 34 刘彤, 杨冠灿, 蒋继娅, 等. 基于多重关系的专利网络演化特征与动态分析——以锂离子电池领域为例[J]. 情报学报, 2014, 33(12): 1288-1301. 35 Carley K M, Reminga J. ORA: organization risk analyzer[R]. Pittsburgh: Carnegie Mellon University, 2004. 36 李永奎, 庞达, 李东宇, 等. 基于元网络的项目组织学习能力对任务完成影响评价仿真方法[J]. 系统工程理论与实践, 2016, 36(5): 1252-1260. 37 Lambiotte R, Tabourier L, Delvenne J C. Burstiness and spreading on temporal networks[J]. The European Physical Journal B, 2013, 86(7): Article No.320. 38 Holme P. Core-periphery organization of complex networks[J]. Physical Review E, 2005, 72(4): 046111. 39 Braha D, Bar-Yam Y. From centrality to temporary fame: dynamic centrality in complex networks[J]. Complexity, 2006, 12(2): 59-63. 40 王慧, 乐孜纯, 龚轩, 等. 从信息学的角度分析复杂网络链路预测[J]. 小型微型计算机系统, 2020, 41(2): 316-326. 41 王金喆. 社交网络用户影响力分析[J]. 电子技术与软件工程, 2017(17): 28. 42 杨煜, 段威威. 基于谱聚类的社交网络动态社区发现算法[J]. 计算机应用, 2023, 43(10): 3129-3135. 43 Redjeki S, Widyarto S. Comparison of seven machine learning algorithms in the classification of public opinion[J]. Tech-E, 2022, 5(2): 143-149. 44 Park M, Geum Y. Two-stage technology opportunity discovery for firm-level decision making: GCN-based link-prediction approach[J]. Technological Forecasting and Social Change, 2022, 183: 121934. 45 Shi Y F, Tao H Y, Deng C B, et al. FBS-TGCN: a temporal graph-convolutional-network model for spatiotemporal prediction of spam messages from fake base stations[J]. International Journal of Geographical Information Science, 2024, 38(3/4): 751-777. 46 Goyal P, Ferrara E. Graph embedding techniques, applications, and performance: a survey[J]. Knowledge-Based Systems, 2018, 151: 78-94. 47 胡昊天, 邓三鸿, 王东波, 等. 情报学视角下的预训练语言模型研究进展[J]. 图书情报工作, 2024, 68(3): 130-150. 48 李一帆, 王玙. 基于动态网络表示学习的学者合作关系预测研究[J]. 情报科学, 2022, 40(6): 115-123. 49 Li X, Tang X L, Lu W. How biomedical papers accumulated their clinical citations: a large-scale retrospective analysis based on PubMed[J]. Scientometrics, 2024, 129(6): 3315-3339. 50 Light R, Adams J. Knowledge in motion: the evolution of HIV/AIDS research[J]. Scientometrics, 2016, 107(3): 1227-1248. 51 Zhang X K, Lin H F, Xu B, et al. Dynamic intent-aware iterative denoising network for session-based recommendation[J]. Information Processing & Management, 2022, 59(3): 102936. 52 Chen R H G, Chen C C, Chen C M. Unsupervised cluster analyses of character networks in fiction: community structure and centrality[J]. Knowledge-Based Systems, 2019, 163: 800-810. 53 Choi J, Ko T, Choi Y, et al. Dynamic graph convolutional networks with attention mechanism for rumor detection on social media[J]. PLoS One, 2021, 16(8): e0256039. 54 Zeng L, Tang M, Liu Y. The impacts of the individual activity and attractiveness correlation on spreading dynamics in time-varying networks[J]. Communications in Nonlinear Science and Numerical Simulation, 2023, 122: 107233. 55 窦永香, 开庆, 王佳敏. 一种基于图表示学习的潜在颠覆性技术识别方法[J]. 情报学报, 2023, 42(6): 637-648. 56 Zhang Y T, Zhao T H, Gao S, et al. Incorporating multimodal context information into traffic speed forecasting through graph deep learning[J]. International Journal of Geographical Information Science, 2023, 37(9): 1909-1935. 57 段宇宁, 刘羿彤, 李晓萌, 等. 从国际计量机构科研产出看计量领域发展态势——基于文献计量学[J]. 计量学报, 2022, 43(5): 565-570. 58 卢志刚, 陈倩. 动态供应链网络中企业合作关系的链路预测[J]. 计算机工程与应用, 2022, 58(2): 265-273. 59 刘虹. 面向科学与技术的交叉领域研究——概念内涵、测度方法[J]. 现代情报, 2024, 44(5): 166-176. 60 杜郁, 朱焱. 构建预训练动态图神经网络预测学术合作行为消失[J]. 计算机应用, 2024, 44(9): 2726-2731. 61 喻宏伟, 周东波, 徐雯慧, 等. 基于多片段语义时空图卷积网络的大学生校园日常行为预测[J]. 清华大学学报(自然科学版), 2022, 62(1): 105-115. 62 赵金羽, 萨娜, 田野, 等. 基于文献计量的人地系统耦合研究动态及热点[J]. 生态学报, 2024, 44(6): 2660-2671. 63 吴颖文, 纪杨建, 顾新建. 基于专利动态复杂网络的产业共性技术预测[J]. 计算机集成制造系统, 2020, 26(12): 3185-3194. 64 陈果, 尹梓涵. 信息资源管理视域下的健康信息学研究——国内外研究主题对比分析[J]. 现代情报, 2024, 44(8): 137-152. 65 Rikken F, Kiers H A L, Vos R. Mapping the dynamics of adverse drug reactions in subsequent time periods using INDSCAL[J]. Scientometrics, 1995, 33(3): 367-380. 66 Xu L W, Qiu J N, Gu W J, et al. The dynamic effects of perceptions of dread risk and unknown risk on SNS sharing behavior during emerging infectious disease events: do crisis stages matter?[J]. Journal of the Association for Information Systems, 2020, 21(3): 545-573. 67 Giannoula A, Comas M, Castells X, et al. Exploring long-term breast cancer survivors' care trajectories using dynamic time warping-based unsupervised clustering[J]. Journal of the American Medical Informatics Association, 2024, 31(4): 820-831. 68 Salie F, de Jager K, Dreher C, et al. The scientific base for orthopaedic device development in South Africa: spatial and sectoral evolution of knowledge development[J]. Scientometrics, 2019, 119(1): 31-54. 69 Lee C Y, Hong S, Kim J. Anticipating multi-technology convergence: a machine learning approach using patent information[J]. Scientometrics, 2021, 126(3): 1867-1896. 70 Hanauer D A, Ramakrishnan N. Modeling temporal relationships in large scale clinical associations[J]. Journal of the American Medical Informatics Association, 2013, 20(2): 332-341. 71 Gao J Y, Sharma R, Qian C, et al. STAN: spatio-temporal attention network for pandemic prediction using real-world evidence[J]. Journal of the American Medical Informatics Association, 2021, 28(4): 733-743. 72 Al-Yarimi F A M, Ali Munassar N M, Al-Wesabi F N. Electrocardiogram stream level correlated patterns as features to classify heartbeats for arrhythmia prediction[J]. Data Technologies and Applications, 2020, 54(5): 685-701. 73 Alemu E N, Huang J B. HealthAid: extracting domain targeted high precision procedural knowledge from on-line communities[J]. Information Processing & Management, 2020, 57(6): 102299. 74 Kim E H J, Jeong Y K, Kim Y H, et al. Exploring scientific trajectories of a large-scale dataset using topic-integrated path extraction[J]. Journal of Informetrics, 2022, 16(1): 101242. 75 Porter A L, Cohen A S, David Roessner J, et al. Measuring researcher interdisciplinarity[J]. Scientometrics, 2007, 72(1): 117-147. 76 Song X L, Yan X B, Li Y M. Modelling liking networks in an online healthcare community: an exponential random graph model analysis approach[J]. Journal of Information Science, 2015, 41(1): 89-96. 77 Li T T, Zeng Z M, Sun S Q, et al. Constructing a multi-layer heterogeneous networks model to explore the public opinion evolution pattern of key users in public health emergencies[J]. Journal of Information Science, 2023. DOI: 10.1177/01655515231169953. 78 Ravindran T, Yeow Kuan A C, Hoe Lian D G. Antecedents and effects of social network fatigue[J]. Journal of the Association for Information Science and Technology, 2014, 65(11): 2306-2320. 79 Liu X L, Shi R Y, Hui Q X, et al. TCACNet: temporal and channel attention convolutional network for motor imagery classification of EEG-based BCI[J]. Information Processing & Management, 2022, 59(5): 103001. 80 Hossain L, Karimi F, Wigand R T, et al. Evolutionary longitudinal network dynamics of global zoonotic research[J]. Scientometrics, 2015, 103: 337-353. 81 Yang C, Liu T T, Chen X H, et al. HNRWalker: recommending academic collaborators with dynamic transition probabilities in heterogeneous networks[J]. Scientometrics, 2020, 123(1): 429-449. 82 Kong X J, Jiang H Z, Wang W, et al. Exploring dynamic research interest and academic influence for scientific collaborator recommendation[J]. Scientometrics, 2017, 113(1): 369-385. 83 Gan M X, Ma Y X. Mapping user interest into hyper-spherical space: a novel POI recommendation method[J]. Information Processing & Management, 2023, 60(2): 103169. 84 Jiang C, Ma X, Zeng J F, et al. TAPRec: time-aware paper recommendation via the modeling of researchers' dynamic preferences[J]. Scientometrics, 2023, 128(6): 3453-3471. 85 Gan M X, Wang C H, Yi L L, et al. Exploiting dynamic social feedback for session-based recommendation[J]. Information Processing & Management, 2024, 61(3): 103632. 86 Wang L Y, Li M C, Zheng H T. High-level feature fusion network for session-based social recommendation[C]// Proceedings of the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2023: 1-5. 87 Romano V, Lozano S, de Pablo J F L. A multilevel analytical framework for studying cultural evolution in prehistoric hunter-gatherer societies[J]. Biological Reviews, 2020, 95(4): 1020-1035. 88 Zhou X F. A spatio-temporal network model of Chinese ethnic culture transmission paths cultural[J]. Applied Mathematics and Nonlinear Sciences, 2024, 9(1). DOI: 10.2478/amns-2024-0789. 89 del Barrio-Tellado M J, Herrero-Prieto L C. Analysing productivity and technical change in museums: a dynamic network approach[J]. Journal of Cultural Heritage, 2022, 53: 24-34. 90 Bornhofen S, Düring M. Exploring dynamic multilayer graphs for digital humanities[J]. Applied Network Science, 2020, 5(1): Article No.54. 91 Sit T, Ying Z, Yu Y. Event history analysis of dynamic networks[J]. Biometrika, 2021, 108(1): 223-230. 92 Jones P, Quinn E, Koskinen J. Measuring centrality in film narratives using dynamic character interaction networks[J]. Social Networks, 2020, 63: 21-37. 93 Prado S D, Dahmen S R, Bazzan A L C, et al. Temporal network analysis of literary texts[J]. Advances in Complex Systems, 2016, 19(3): 1650005. 94 Zhang Y X, Feng Y X, Yang R Q. Network public opinion propagation model based on the influence of media and interpersonal communication[J]. International Journal of Modern Physics B, 2019, 33(32): 1950393. 95 Yu S Z, Yu Z Y, Jiang H J, et al. The dynamics and control of 2I2SR rumor spreading models in multilingual online social networks[J]. Information Sciences, 2021, 581: 18-41. 96 陈舒婷, 疏学明, 胡俊, 等. 基于时序超网络模型的突发事件网络舆情热点话题发现与演化[J]. 清华大学学报(自然科学版), 2023, 63(6): 968-979. 97 刘小洋, 何道兵, 刘超, 等. 基于时变阻尼运动的社交网络信息传播动力学分析[J]. 中国科学: 信息科学, 2021, 51(11): 1867-1884. 98 Chai Y, Wang Y G, Zhu L. Information sources estimation in time-varying networks[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 2621-2636. 99 危小超, 张艳菲, 李锋, 等. 基于过度反应与动态网络的互联网产品扩散消费者交互行为研究[J]. 计算机集成制造系统, 2022, 28(9): 3018-3030. 100 闫志华, 唐锡晋. 基于动态网络的事件风险演变研究[J]. 系统科学与数学, 2022, 42(10): 2590-2601. 101 Yang P, Leng J C, Zhao G Z, et al. Rumor detection driven by graph attention capsule network on dynamic propagation structures[J]. The Journal of Supercomputing, 2023, 79(5): 5201-5222. 102 朱义鑫, 朱恺. 基于时序网络记忆效应的意见领袖动态识别[J]. 计算机工程与设计, 2023, 44(2): 343-348. 103 Song H Y, Hou J H, Zhang Y. The measurements and determinants of patent technological value: lifetime, strength, breadth, and dispersion from the technology diffusion perspective[J]. Journal of Informetrics, 2023, 17(1): 101370. 104 张雪原, 许景权, 高国力. 我国基础设施系统集成的机制构建、突出问题与优化思路[J]. 经济纵横, 2024(3): 60-69. 105 Jiang Y C, Dai P W, Fang P C, et al. Electrical-STGCN: an electrical spatio-temporal graph convolutional network for intelligent predictive maintenance[J]. IEEE Transactions on Industrial Informatics, 2022, 18(12): 8509-8518. 106 Gu X H, Zhang Q, Li J F, et al. The changing nature and projection of floods across Australia[J]. Journal of Hydrology, 2020, 584: 124703. 107 Zhou X, Guo Y, Li F S, et al. Identifying and assessing innovation pathways for emerging technologies: a hybrid approach based on text mining and altmetrics[J]. IEEE Transactions on Engineering Management, 2021, 68(5): 1360-1371. 108 Nguyen A L, Liu W Y, Khor K A, et al. The golden eras of graphene science and technology: bibliographic evidences from journal and patent publications[J]. Journal of Informetrics, 2020, 14(4): 101067. 109 Mu?oz-écija T, Vargas-Quesada B, Chinchilla-Rodríguez Z. Unveiling cognitive structure and comparative advantages of countries in knowledge domains[J]. Journal of Information Science, 2024, 50(1): 145-161. 110 Wu H, Yi H F, Li C. An integrated approach for detecting and quantifying the topic evolutions of patent technology: a case study on graphene field[J]. Scientometrics, 2021, 126(8): 6301-6321. 111 丁小欧, 于晟健, 王沐贤, 等. 基于相关性分析的工业时序数据异常检测[J]. 软件学报, 2020, 31(3): 726-747. 112 王慧敏, 黄晶, 刘高峰, 等. 大数据驱动的城市洪涝灾害风险感知与预警决策研究范式[J]. 工程管理科技前沿, 2022, 41(1): 35-41. 113 赵冬月, 陈长坤, 易亮. 灾害演化网络时序性风险评估模型[J]. 中国安全科学学报, 2021, 31(3): 171-177. 114 刘伟, 孙佳, 王鹏, 等. 城市大数据认知计算研究与应用进展[J]. 计算机科学, 2024, 51(7): 49-58. 115 刘树林, 李红军, 甘雨金, 等. 基于线性低秩卷积与道路网络的城市流量推断[J]. 计算机工程, 2024, 50(7): 333-341. 116 杨亚让, 吴云虎. 基于随机森林的无线传感器通信网络阻塞故障检测[J]. 吉林大学学报(工学版), 2023, 53(5): 1490-1495. 117 叶宝林, 戴本岙, 张鸣剑, 等. 基于图卷积网络的交通流预测方法综述[J]. 南京信息工程大学学报, 2024, 16(3): 291-310. 118 郭淑慧, 吕欣. 网络直播大数据: 统计特征与时序规律挖掘[J]. 复杂系统与复杂性科学, 2023, 20(2): 1-9, 19. 119 王子彤, 李晨亮. 基于位置感知时空图卷积网络的交通流量预测[J/OL]. 数据分析与知识发现, (2024-03-14). https://kns.cnki.net/kcms/detail/10.1478.G2.20240313.1052.002.html. 120 张安勤, 胡梓明. 基于残差时序图卷积网络的交通速度预测[J]. 计算机仿真, 2023, 40(11): 116-121. 121 Wang Y, Currim F, Ram S. Deep learning of spatiotemporal patterns for urban mobility prediction using big data[J]. Information Systems Research, 2022, 33(2): 579-598. 122 何迎利, 胡光宇, 张浩, 等. 基于局部信息增强注意力机制的网络流量预测[J]. 科学技术与工程, 2023, 23(30): 13014-13022. 123 薛自杰, 卢昱妃, 宁芊, 等. 基于时空特征融合的网络流量预测模型[J]. 哈尔滨工业大学学报, 2023, 55(5): 30-38. |
|
|
|