|
|
Comprehensive Analysis of Data Characteristics in Chinese Academic Papers Mentioned on WeChat |
Yu Houqiang1, Li Longfei2,3, Yang Siluo2,3 |
1.School of Information Management, Sun Yat-sen University, Guangzhou 510006 2.School of Information Management, Wuhan University, Wuhan 430072 3.Research Center for Chinese Science Evaluation (RCCSE), Wuhan University, Wuhan 430072 |
|
|
Abstract Research on the development and application of Chinese altmetric data is limited. This study aims to contribute to the construction of China’s independent knowledge system by investigating the distribution characteristics of numerical values associated with Chinese academic papers mentioned on WeChat. This study presents the distribution characteristics of WeChat mention indicators of all the Chinese academic papers mentioned on WeChat and included in the China National Knowledge Infrastructure (CNKI) in January 2021. The presentation form and timeliness were analyzed along with paper, source, and discipline levels using statistical analysis and data visualization. The main finding of this study is that non-referenced literature accounts for 60.80% of WeChat mentions. Second, the timeliness of WeChat mentions was 56.56%, mainly because scholars shared their research findings at conferences and lectures. Third, the Chinese academic papers mentioned on WeChat official accounts are diverse and scattered. Papers published in core journals are more likely to be mentioned, and the WeChat accounts of journals exhibit noticeable self-mention behavior. Fourth, mentions of academic papers can enhance the professionalism and authority of WeChat articles, promoting their dissemination along with research results, thereby increasing their social impact.
|
Received: 19 December 2023
|
|
|
|
1 杨思洛, 于永浩, 郑梦雪. 中国人文社科成果的国际影响力研究[M]. 北京: 中国社会科学出版社, 2022. 2 Haustein S, Bowman T D, Costas R. Interpreting “altmetrics”: viewing acts on social media through the lens of citation and social theories[M]// Theories of Informetrics and Scholarly Communication. Berlin: De Gruyter Saur, 2016: 372-406. 3 NISO. Outputs of the NISO alternative assessment metrics project[M/OL]. Baltimore: National Information Standards Organization, 2016. (2017-10-06) [2024-04-29]. https://groups.niso.org/higherlogic/ws/public/download/17091. 4 Lin J, Fenner M. Altmetrics in evolution: defining and redefining the ontology of article-level metrics[J]. Information Standards Quarterly, 2013, 25(2): 20-26. 5 Holmberg K. The meaning of altmetrics[C]// Proceedings of the International Association of Scientific and Technological University Libraries Conferences. Cham: Springer, 2014: 1-12. 6 邱均平, 余厚强. 基于影响力产生模型的替代计量指标分层研究[J]. 情报杂志, 2015, 34(5): 53-58. 7 杨岳, 王贤文. Altmetrics十年发展综述[J]. 情报杂志, 2021, 40(11): 136-146. 8 陈铭, 叶继元. 中文Altmetrics数据整合分析平台的建立研究[J]. 大学图书馆学报, 2022, 43(4): 110-119. 9 赵蓉英, 陈文欣, 朱伟杰. 从Altmetrics到社交媒体计量学——社交媒体时代计量学的新发展[J]. 图书情报工作, 2023, 67(16): 3-12. 10 Costas R, de Rijcke S, Marres N. “Heterogeneous couplings”: operationalizing network perspectives to study science-society interactions through social media metrics[J]. Journal of the Association for Information Science and Technology, 2021, 72(5): 595-610. 11 余厚强, 马超, 王玥, 等. 中国替代计量数据的来源与识别研究[J]. 情报理论与实践, 2022, 45(12): 111-118. 12 韩毅, 赵昕, 汪舒. 国内学术期刊的Altmetrics数据提及语境与数据可用性研究——以B站Altmetrics数据为例[J]. 情报理论与实践, 2023, 46(5): 66-74. 13 余厚强, 李佳桐. 作为替代计量数据源的中国新闻平台特点研究[J]. 现代情报, 2022, 42(6): 138-147, 159. 14 钟智杰. 微信公众平台: 新闻传播变革的又一个机遇[J]. 记者摇篮, 2021(9): 15-16. 15 金兼斌, 江苏佳, 陈安繁, 等. 新媒体平台上的科学传播效果: 基于微信公众号的研究[J]. 中国地质大学学报(社会科学版), 2017, 17(2): 107-119. 16 张小强, 吉媛, 游滨. 微信传播指数领先的学术期刊公众号运营调查及启示[J]. 中国科技期刊研究, 2018, 29(6): 574-584. 17 黄楚新, 王丹. 微信公众号的现状、类型及发展趋势[J]. 新闻与写作, 2015, 19(7): 5-9. 18 胡媛, 秦怡然. 基于微信的用户学术信息交流模型构建[J]. 情报科学, 2019, 37(1): 22-29, 36. 19 石婧, 段春波, 周白瑜, 等. 科技期刊应用微博微信平台影响力评价初探[J]. 中国科技期刊研究, 2014, 25(5): 655-660. 20 Zhao R Y, Wei M K. Academic impact evaluation of Wechat in view of social media perspective[J]. Scientometrics, 2017, 112(3): 1777-1791. 21 宗明刚, 赵文青. 微信推广对学术论文传播效果的影响——以新闻传播类学术期刊为例[J]. 中国科技期刊研究, 2020, 31(6): 697-701. 22 谢文亮. 移动互联网时代学术期刊的微信公众号服务模式创新[J]. 中国科技期刊研究, 2015, 26(1): 65-72. 23 张扬. 科技期刊微信公众号3种运营模式分析探讨[J]. 中国科技期刊研究, 2017, 28(1): 39-46. 24 方婧, 陆伟. 微信公众号信息传播热度的影响因素实证研究[J]. 情报杂志, 2016, 35(2): 157-162. 25 Yu H Q, Li L F. Altmetrics mentioned in WeChat articles: evolution, topic, context and comparison with scholarly publications[J]. Data Science and Informetrics, 2021, 1(3): 74-92. 26 王玲宁, 陈昕卓. 自媒体科学传播内容与媒体显著性之研究——以微信公众号“果壳网”为例[J]. 新闻大学, 2017(5): 68-76, 149. 27 陈琳. 我国图书情报领域学术微信公众号建设现状分析研究[D]. 长春: 东北师范大学, 2021. 28 潘伟. 基于文本挖掘技术的微信公众号关系网络研究[D]. 南京: 东南大学, 2018. 29 周海晨. 基于爬虫与文本挖掘的“985”高校图书馆微信公众号的调研[D]. 合肥: 安徽大学, 2017. 30 Yu H Q. Context of altmetrics data matters: an investigation of count type and user category[J]. Scientometrics, 2017, 111(1): 267-283. 31 Barthel S, T?nnies S, K?hncke B, et al. What does twitter measure? Influence of diverse user groups in altmetrics[C]// Proceedings of the 15th ACM/IEEE-CS Joint Conference on Digital Libraries. New York: ACM Press, 2015: 119-128. 32 Mohammadi E, Thelwall M, Kwasny M, et al. Academic information on Twitter: a user survey[J]. PLoS One, 2018, 13(5): e0197265. 33 Vainio J, Holmberg K. Highly tweeted science articles: who tweets them? An analysis of Twitter user profile descriptions[J]. Scientometrics, 2017, 112(1): 345-366. 34 余厚强, HemmingerBradley M., 肖婷婷, 等. 新浪微博替代计量指标特征分析[J]. 中国图书馆学报, 2016, 42(4): 20-36. 35 余厚强, 肖婷婷, 王曰芬, 等. 政策文件替代计量指标分布特征研究[J]. 中国图书馆学报, 2017, 43(5): 57-69. 36 余厚强, 曹雪婷, 王曰芬. 新闻替代计量指标的分布特征研究[J]. 情报学报, 2020, 39(10): 1081-1092. 37 Yu H Q, Xu S M, Xiao T T, et al. Global science discussed in local altmetrics: Weibo and its comparison with Twitter[J]. Journal of Informetrics, 2017, 11(2): 466-482. |
|
|
|