|
|
Study on the Recognition Method of Frontier Topic in the Medical Field |
Fan Shaoping, An Xinying, Yan Guilai, Li Yong |
Institute of Medical Information & Library, Chinese Academy of Medical Sciences, Beijing 100020 |
|
|
Abstract Frontier topic recognition has always been a key point in the field of Library and Information Science. With the emergence of the new paradigm of data intensive science, the importance and necessity of frontier topic recognition has increased. This paper focused on the features of medical literature and designed the calculation method of each feature: novelty, innovation, interdisciplinary, and high attention. In addition, we combined it with the medical thesaurus for the method of innovation that calculated semantic similarity beside topics. To determine the weight of each feature, we used the domain example. We tested the effectiveness of the proposed recognition method through experiments. The advanced topic recognition method in this paper has a certain reference value for identifying more meaningful research topics in the medical field.
|
Received: 25 February 2018
|
|
|
|
[1] Price D J D. Networks of scientific papers[J]. Science, 1965, 149(3683): 510-515. [2] Small H.Co-citation in the scientific literature: A new measure of the relationship between two documents[J]. Journal of the American Society for Information Science, 1973, 24(4): 265-269. [3] Persson O.The intellectual base and research fronts of JASIS 1986-1990[J]. Journal of the American Society for Information Science 1994, 45(1): 31-38. [4] Garfield E.Research fronts[J]. Current Contents, 1994, 41: 3-7. [5] Kostoff R N.Citation analysis cross-field normalization: A new paradigm[J]. Scientometrics, 1997, 39(3): 225-230. [6] 陈悦, 陈超美, 胡志刚, 等. 引文空间分析原理与应用——Citespace实用指南[M]. 北京: 科学出版社, 2014. [7] 吴菲菲, 杨梓, 黄鲁成. 基于创新性和学科交叉性的研究前沿探测模型——以智能材料领域研究前沿探测为例[J]. 科学学研究, 2015(1): 11-20. [8] Frontier research: The European challenge[EB/OL]. [2015-11-23]. http://ec.europa.eu/research/future/pdf/hleg_exec-sum_frontier_ research_april2005. pdf. [9] 范少萍. 基于文献计量学的研究前沿指标体系及其对我国科学基金评审的借鉴意义[J]. 中国科学基金, 2016, 30(2): 171-178. [10] Zhang L, Zhang Z.Detection of early-stage research fronts——An example of complex networks research[J]. Chinese Journal of Library and Information Science, 2014, 7(4): 77-94. [11] 郑彦宁, 许晓阳, 刘志辉. 基于关键词共现的研究前沿识别方法研究[J]. 图书情报工作, 2016, 60(4): 85-92. [12] Tu Y N, Seng J L.Indices of novelty for emerging topic detection[J]. Information Processing & Management, 2012, 48(2): 303-325. [13] Small H, Boyack K W, Klavans R.Identifying emerging topics in science and technology[J]. Research Policy, 2014, 43(8): 1450-1467. [14] 范少萍, 安新颖, 倪萍. 基于文献的研究前沿特征与识别方法研究[J]. 情报工程, 2017, 3(1): 56-65. [15] 庞景安. 科学计量研究方法论[M]. 北京: 科学技术文献出版社, 1999. [16] Pierce S J.Boundary crossing in research literatures as a means of interdisciplinary information transfer[J]. Journal of the American Society for Information Science, 1999, 50(3): 271-279. [17] Porter A L, Cohen A S, Roessner J D, et al.Measuring researcher interdisciplinarity[J]. Scientometrics, 2007, 72(1): 117-147. [18] 和晋飞, 房俊民. 一个跨学科性测度指标: 作者专业度[J]. 情报理论与实践, 2015, 38(5): 42-45, 41. [19] Stirling A.A general framework for analysing diversity in science, technology and society[J]. Journal of the Royal Society Interface, 2007, 4(15): 707-719. [20] 张金柱, 韩涛, 王小梅. 利用参考文献的学科分类分析图书情报领域的学科交叉性[J]. 图书情报工作. 2013, 57(1): 108-11, 46. [21] 许海云, 刘春江, 雷炳旭, 等. 学科交叉的测度、可视化研究及应用——一个情报学文献计量研究案例[J]. 图书情报工作, 2014, 58(12): 95-101. [22] 刘宏哲, 须德. 基于本体的语义相似度和相关度计算研究综述[J]. 计算机科学, 2012, 39(2): 8-13. [23] 范少萍, 安新颖, 逯万辉. 医学文献主题语义相似度计算方法研究[J]. 图书情报工作, 2017, 61(8): 96-105. [24] 郭涵宁. 多元科学指标视角下的新兴研究领域识别探索[D]. 大连: 大连理工大学, 2013. [25] 黄乾荣, 张玲. 原发性肝癌治疗研究新进展[J]. 实用医学杂志, 2016, 32(14): 2275-2278. [26] Honda K, Sbisà E, Tullo A, et al.p53 mutation is a poor prognostic indicator for survival in patients with hepatocellular carcinoma undergoing surgical tumour ablation[J]. British Journal of Cancer, 1998, 77(5): 776-782. [27] Grieco A, Matera A, Di Rocco P, et al.Plasma levels of fibronectin in patients with chronic viral and alcoholic liver disease[J]. Hepato-gastroenterology, 1998, 45(23): 1731. [28] Wogan G N.Impacts of chemicals on liver cancer risk[J]. Seminars in Cancer Biology, 2000, 10(3): 201-210. [29] Blei D M, Ng A Y, Jordan M I.Latent dirichlet allocation[J]. The Journal of Machine Learning Research, 2003, 3: 993-1022. [30] Blei D M, Lafferty J D.Dynamic topic models[C]// Proc. International Conference on Machine Learning. 2006: 113-120. [31] Alsumait L, Domeniconi C.On-line LDA: Adaptive Topic Models for Mining Text Streams with Applications to Topic Detection and Tracking[C]// Eighth IEEE International Conference on Data Mining. IEEE, 2008: 3-12. [32] 王拥军. 心房颤动相关卒中: 卒中研究的新热点[J]. 中华内科杂志, 2012, 51(5): 339-340 [33] Di Biase L, Burkhardt J D, Santangeli P, et al.Periprocedural stroke and bleeding complications in patients undergoing catheter ablation of atrial fibrillation with different anticoagulation management: results from the Role of Coumadin in Preventing Thromboembolism in Atrial Fibrillation (AF) Patients[J]. Circulation, 2014, 129(25): 2638 [34] Cappato R, Ezekowitz M D, Klein A L, et al.Rivaroxaban vs. vitamin K antagonists for cardioversion in atrial fibrillation[J]. European Heart Journal, 2014, 35(47): 346-3355 [35] Hori M, Connolly S J, Zhu J, et al.Dabigatran versus warfarin: effects on ischemic and hemorrhagic strokes and bleeding in Asians and non-Asians with atrial fibrillation[J]. Stroke, 2013, 44(7): 1891-1987. |
|
|
|