|
|
Identification Method of Innovation Driving Relationships among Science, Technology, and Industry from the Perspective of the Knowledge Network |
Wang Chao1, Xu Haiyun1, Qi Yancui2, Wu Huawei3 |
1.Business School, Shandong University of Technology, Zibo 255000 2.Shandong Normal University Library, Jinan 250014 3.Archives of Northwestern Normal University, Lanzhou 730070 |
|
|
Abstract Research on the relationship between innovation drivers in science, technology, and industry is crucial for achieving deep and effective integration and development of scientific discovery, technological innovation, and industry. This study investigates innovation-driven relationships between science, technology, and industry through the lens of knowledge networks. First, a temporal knowledge network is constructed to capture the structural characteristics of the knowledge network using the concept of structural entropy in the community network. Subsequently, this study explores the relationship between the three systems of science, technology, and industry in the innovation process by analyzing the transfer entropy between the characteristic information of the network structure. Furthermore, the changing characteristics of the knowledge transfer path under the main driving relationship are examined using mutual information. Finally, empirical research focuses on the field of regenerative medicine (stem cells) to investigate how the mutual driving relationships among science, technology, and industry vary at different stages. This study also reveals different inheritance patterns of knowledge content on the knowledge transmission path among the three systems. In science-driven technology processes, the inheritance characteristics of the knowledge transfer path are consistently strengthened. However, in technology-driven science, the inheritance of the knowledge-transfer path is unstable and exhibits discontinuous characteristics. Moreover, this study demonstrates the scientific validity of the proposed method through various means and suggests its applicability in identifying innovation-driven relationships among science, technology, and industry in other innovation fields.
|
Received: 11 January 2023
|
|
|
|
1 Feynman R. What is science?[J]. Resonance, 2011, 16(9): 860-873. 2 钱时惕. 什么是技术及科学与技术的关系——科学与人文漫话之二[J]. 物理通报, 2009(11): 55-56, 64. 3 Xu H Y, Winnink J, Yue Z H, et al. Topic-linked innovation paths in science and technology[J]. Journal of Informetrics, 2020, 14(2): 101014. 4 Wikipedia. Industry[EB/OL]. (2022-04-29). https://en.wikipedia.org/w/index.php?title=Industry&oldid=1085329087. 5 芮明杰. 产业经济学[M]. 2版. 上海: 上海财经大学出版社, 2012. 6 Turkenburg W C. The innovation chain: policies to promote energy innovations[M]. New York: The UN Publication, 2002. 7 Sen N. Innovation chain and CSIR[J]. Current Science, 2003, 85(5): 570-574. 8 Mowery D C, Nelson R R. Sources of industrial leadership: studies of seven industries[M]. Cambridge: Cambridge University Press, 1999. 9 Pavitt K. Technology, management and systems of innovation[M]. Cheltenham: Edward Elgar Publishing, 1999. 10 张鹏, 雷家骕. 基于科学的产业发展模式研究——以心电图和石墨烯产业为例[J]. 科学学与科学技术管理, 2015, 36(9): 40-53. 11 Xu H Y, Yue Z H, Pang H S, et al. Integrative model for discovering linked topics in science and technology[J]. Journal of Informetrics, 2022, 16(2): 101265. 12 江泓. 科学革命、技术革命、产业革命的关系和发展阶段[J]. 历史教学, 1992(6): 8-13. 13 彭帅, 张春博, 杨阳, 等. 科学-技术-产业关联视角下石墨烯发展国际比较——基于专利的计量研究[J]. 中国科技论坛, 2019(4): 181-188. 14 李天柱, 刘小琴, 马佳, 等. 从科学预言到新兴产业: 纳米技术创新的启示[J]. 中国科技论坛, 2015(6): 22-25. 15 Kenta I, Kazuyuki M, Ryuichi T, et al. Measuring science intensity of industry using linked dataset of science, technology and industry[R]. Tokyo: Research Institute of Economy, Trade and Industry, 2017. 16 武华维, 王超, 许海云, 等. 知识耦合视角下区域科学—技术—产业协同创新水平的评价方法研究[J]. 情报理论与实践, 2020, 43(5): 91-98, 8. 17 Han Y J. Linking science and technology with industry[J]. Journal of Technology Management & Innovation, 2007, 2(2): 7-17. 18 Park H W, Suh S H, Lee J T. Scientific and technological knowledge flow and technological innovation: quantitative approach using patent citation[C]// 2011 Proceedings of PICMET’11: Technology Management in the Energy Smart World. Piscataway: IEEE, 2011: 1-13. 19 Wong C Y, Fung H N. Science-technology-industry correlative indicators for policy targeting on emerging technologies: exploring the core competencies and promising industries of aspirant economies[J]. Scientometrics, 2017, 111(2): 841-867. 20 Holme P, Saram?ki J. Temporal networks[J]. Physics Reports, 2012, 519(3): 97-125. 21 楼凤丹, 周银座, 庄晓丹, 等. 时效网络结构及动力学研究进展综述[J]. 电子科技大学学报, 2017, 46(1): 109-125. 22 刘自强, 许海云, 罗瑞, 等. 基于主题关联分析的科技互动模式识别方法研究[J]. 情报学报, 2019, 38(10): 997-1011. 23 白如江, 冷伏海. k-clique社区知识创新演化方法研究[J]. 图书情报工作, 2013, 57(17): 86-94. 24 Newman M E J. Fast algorithm for detecting community structure in networks[J]. Physical Review E, 2004, 69(6): 066133. 25 Dehmer M, Mowshowitz A. A history of graph entropy measures[J]. Information Sciences, 2011, 181(1): 57-78. 26 Cai M, Cui Y, Stanley H E. Analysis and evaluation of the entropy indices of a static network structure[J]. Scientific Reports, 2017, 7: Article No.9340. 27 黄丽亚, 霍宥良, 王青, 等. 基于K-阶结构熵的网络异构性研究[J]. 物理学报, 2019, 68(1): 325-336. 28 Almog A, Shmueli E. Structural entropy: monitoring correlation-based networks over time with application to financial markets[J]. Scientific Reports, 2019, 9: Article No.10832. 29 Gedikli A, Aksoy H, Unal N E. Segmentation algorithm for long time series analysis[J]. Stochastic Environmental Research and Risk Assessment, 2008, 22(3): 291-302. 30 Huang L, Chen X, Zhang Y, et al. Identification of topic evolution: network analytics with piecewise linear representation and word embedding[J]. Scientometrics, 2022, 127(9): 5353-5383. 31 Hallac D, Nystrup P, Boyd S. Greedy Gaussian segmentation of multivariate time series[J]. Advances in Data Analysis and Classification, 2019, 13(3): 727-751. 32 Schreiber T. Measuring information transfer[J]. Physical Review Letters, 2000, 85(2): 461-464. 33 Choi I, Kim W C. Detecting and analyzing politically-themed stocks using text mining techniques and transfer entropy—focus on the republic of Korea’s case[J]. Entropy, 2021, 23(6): 734. 34 蔡爽, 胡瑾秋, 张来斌. 基于传递熵与KELM的炼油化工过程风险传播路径分析方法[J]. 中国安全生产科学技术, 2018, 14(3): 19-26. 35 Khan F H, Qamar U, Bashir S. SentiMI: introducing point-wise mutual information with SentiWordNet to improve sentiment polarity detection[J]. Applied Soft Computing, 2016, 39: 140-153. 36 李健, 韩毅. 基于主路径的领域知识扩散演变研究——以太阳能领域为例[J]. 情报学报, 2014, 33(8): 883-891. 37 Rajabzadeh N, Fathi E, Farahzadi R. Stem cell-based regenerative medicine[J]. Stem Cell Investigation, 2019, 6: 19. 38 The Bush Ranch. President discusses stem cell research[EB/OL]. (2001-08-09) [2023-01-01]. https://georgewbush-whitehouse.archives.gov/news/releases/2001/08/20010809-2.html. 39 Levine A D. Research policy and the mobility of US stem cell scientists[J]. Nature Biotechnology, 2006, 24(7): 865-866. 40 Bonnet D, Dick J E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell[J]. Nature Medicine, 1997, 3(7): 730-737. 41 Charitos I A, Ballini A, Cantore S, et al. Stem cells: a historical review about biological, religious, and ethical issues[J]. Stem Cells International, 2021, 2021: Article ID 9978837. 42 The Lens - free & open patent and scholarly search[EB/OL]. [2023-01-01]. https://www.lens.org/lens. 43 Bergman K, Graff G D. The global stem cell patent landscape: implications for efficient technology transfer and commercial development[J]. Nature Biotechnology, 2007, 25(4): 419-424. 44 Mathews D J H, Graff G D, Saha K, et al. Access to stem cells and data: persons, property rights, and scientific progress[J]. Science, 2011, 331(6018): 725-727. 45 Hernandez-Melchor D, Lopez-Bayghen E, Padilla-Viveros A. The patent landscape in the field of stem cell therapy: closing the gap between research and clinic[J]. F1000Research, 2022, 11: 997. 46 Hu Z Y, Pang H, Wei L, et al. Identifying research fronts based on scientific papers and patents using topic model: a case study on regenerative medicine[C]// Proceedings of the 7th Global TechMining Conference, Atlanta, US, 2017. 47 黄朝君, 贾建伟, 秦赫, 等. 基于Copula熵-随机森林的中长期径流预报研究[J]. 人民长江, 2021, 52(11): 81-85. 48 Ghawi R, Pfeffer J. A community matching based approach to measuring layer similarity in multilayer networks[J]. Social Networks, 2022, 68: 1-14. |
|
|
|