|
|
Impact of Top Scholars' Research Dynamics on Discipline Development |
Tao Wenqian, Pan Yuntao, Wang Haiyan |
Institute of Scientific and Technical Information of China, Beijing 100038 |
|
|
Abstract This study explored the relationship between the research dynamics of top scholars and the development of a discipline, to understand their influence, explore the regularity in iteration of scientific knowledge, and obtain insights for optimizing talent evaluation. We developed a quantitative model that focused on top scholars in a discipline, utilizing three dimensions (time, topic, and influence relationships) for the basic indicators. We combined this with the development life cycle of topic popularity, defined the types of influence that scholars have on the development of the discipline, constructed scholars’ impact functions, and analyzed the degree of impact of top scholars’ research on the development of the discipline. Based on empirical research in the field of gene editing, the most significant impact of top scholars on the development of the discipline was seen in the promotion of the third-generation gene editing technology CRISPR (clustered regularly interspaced short palindromic repeats) to become the most mainstream research topic, thereby achieving technological innovation. Compared to all scholars, top scholars played a prominent role in pioneering innovation and supporting other scholars and maintained advantages as the field continued to develop. We also analyzed the research dynamics of two typical scholars’ impact on the development of their discipline and identified two distinct impact patterns: the promoting pattern and the pattern that is a combination of pioneering, guiding, and supporting. The computed results are consistent with reality, which verifies the reliability of the constructed model.
|
Received: 28 June 2023
|
|
|
|
1 习近平. 深入实施新时代人才强国战略 加快建设世界重要人才中心和创新高地[J]. 求是, 2021(24): 4-15. 2 《关于开展科技人才评价改革试点的工作方案》政策解读[EB/OL]. (2022-11-10) [2023-07-25]. https://www.gov.cn/zhengce/2022-11/10/content_5725770.htm. 3 D?普莱斯. 小科学, 大科学[M]. 宋剑耕, 戴振飞, 译. 北京: 世界科学社, 1982: 30-33. 4 乔纳森?科尔, 斯蒂芬?科尔. 科学界的社会分层[M]. 赵佳苓, 顾昕, 黄绍林, 译. 北京: 华夏出版社, 1989: 40-100. 5 高志, 陈兰杰, 张志强. 顶尖科学家的学术影响力变化规律研究进展[J]. 图书情报工作, 2016, 60(6): 135-141. 6 哈里特?朱克曼. 科学界的精英——美国的诺贝尔奖金获得者[M]. 周叶谦, 冯世则, 译. 北京: 商务印书馆, 1979: 14, 272-300. 7 徐祥运, 蔡振东, 林琳. 杰出科学家行政任职的概念界定、类型划分与状况概述[J]. 大连大学学报, 2016, 37(4): 139-143. 8 娄伟. 我国高层次科技人才激励政策分析[J]. 中国科技论坛, 2004(6): 139-143. 9 杜建, 张玢, 李阳, 等. 学者学术影响力评价指标的优选与学术行为特点的国内外比较[J]. 图书情报工作, 2011, 55(10): 98-102, 143. 10 Li W H, Aste T, Caccioli F, et al. Early coauthorship with top scientists predicts success in academic careers[J]. Nature Communications, 2019, 10: 5170. 11 Ioannidis J P A, Baas J, Klavans R, et al. A standardized citation metrics author database annotated for scientific field[J]. PLoS Biology, 2019, 17(8): e3000384. 12 孙玉涛, 陈灵芝. 诺奖候选人学术影响、提名人身份与获奖概率[J]. 科学学研究, 2019, 37(9): 1550-1557. 13 Ashton S V, Oppenheim C. A method of predicting Nobel prizewinners in chemistry[J]. Social Studies of Science, 1978, 8(3): 341-348. 14 Gingras Y, Wallace M L. Why it has become more difficult to predict Nobel Prize winners: a bibliometric analysis of nominees and winners of the chemistry and physics prizes (1901-2007)[J]. Scientometrics, 2010, 82(2): 401-412. 15 Clarivate. Highly cited researchers[EB/OL]. [2023-05-29]. https://clarivate.com/highly-cited-researchers. 16 Ioannidis J P A, Boyack K W, Baas J. Updated science-wide author databases of standardized citation indicators[J]. PLoS Biology, 2020, 18(10): e3000918. 17 Abramo G, D’Angelo C A, Caprasecca A. The contribution of star scientists to overall sex differences in research productivity[J]. Scientometrics, 2009, 81(1): 137-156. 18 吴殿廷, 李东方, 刘超, 等. 高级科技人才成长的环境因素分析——以中国两院院士为例[J]. 自然辩证法研究, 2003, 19(9): 54-63. 19 王章豹, 郑筱. 国家最高科学技术奖获得者的群体状况分析及启示[J]. 科技和产业, 2022, 22(3): 63-71. 20 高芳祎. 华人精英科学家成长过程特征及影响因素研究[D]. 上海: 华东师范大学, 2015: 205-206. 21 Kwiek M. The European research elite: a cross-national study of highly productive academics in 11 countries[J]. Higher Education, 2016, 71(3): 379-397. 22 Yair G, Goldstein K. The Annus Mirabilis paper: years of peak productivity in scientific careers[J]. Scientometrics, 2020, 124(2): 887-902. 23 Liang L M. R-sequences: relative indicators for the rhythm of science[J]. Journal of the American Society for Information Science and Technology, 2005, 56(10): 1045-1049. 24 Liang L M, Zhong Z, Chen Y. A Chinese professor’s academic career rhythm[J]. Scientometrics, 2021, 126(7): 6169-6186. 25 Yin Z F, Zhi Q. Dancing with the academic elite: a promotion or hindrance of research production?[J]. Scientometrics, 2017, 110(1): 17-41. 26 Dong J Y, Liu J M, Liu T Z. The impact of top scientists on the community development of basic research directed by government funding: evidence from program 973 in China[J]. Scientometrics, 2021, 126(10): 8561-8579. 27 Hu X J, Rousseau R. Nobel prize winners 2016: igniting or sparking foundational publications?[J]. Scientometrics, 2017, 110(2): 1053-1063. 28 Liu Y X, Rousseau R. Towards a representation of diffusion and interaction of scientific ideas: the case of fiber optics communication[J]. Information Processing & Management, 2012, 48(4): 791-801. 29 张铭. 诺奖往事——诺贝尔生理学或医学奖史话[M]. 北京: 科学出版社, 2018: 180-198. 30 Xi F J, Rousseau R, Hu X J. “sparking” and “igniting” key publications of 2020 Nobel Prize laureates[J]. Journal of Data and Information Science, 2021, 6(2): 28-40. 31 Xi F J, Rousseau R, Hu X J. Do elite scientists play a key role in the genesis of transformative research of “sparking type”? An investigation in the science of science[J]. Malaysian Journal of Library & Information Science, 2022, 27(2): 1-18. 32 马费成, 夏永红. 网络信息的生命周期实证研究[J]. 情报理论与实践, 2009, 32(6): 1-7. 33 托马斯·库恩. 科学革命的结构[M]. 伊恩·哈金, 导读. 张卜天, 译. 北京: 北京大学出版社, 2022: 1-7. 34 王海山. 从波普尔、库恩的科学观看科学发展的规律性[J]. 科学学研究, 1984, 2(1): 34-40. 35 王康, 高继平, 潘云涛, 等. 多位态研究主题识别及其演化路径方法研究[J]. 图书情报工作, 2021, 65(11): 113-122. 36 Tattershall E, Nenadic G, Stevens R D. Modelling trend life cycles in scientific research using the Logistic and Gompertz equations[J]. Scientometrics, 2021, 126(11): 9113-9132. 37 Ledford H, Callaway E. Pioneers of revolutionary CRISPR gene editing win chemistry Nobel[J]. Nature, 2020, 586(7829): 346-347. 38 Anzalone A V, Koblan L W, Liu D R. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors[J]. Nature Biotechnology, 2020, 38(7): 824-844. 39 刘世利. CRISPR基因编辑技术[M]. 北京: 化学工业出版社, 2021: 1-37. 40 Hille F, Richter H, Wong S P, et al. The biology of CRISPR-Cas: backward and forward[J]. Cell, 2018, 172(6): 1239-1259. |
|
|
|