|
|
Risk Identification and Early Warning Model of Social Media Network Public Opinion in Emergencies |
Li Yueqi1,3, Wang Xiwei1,2,3, Wang Nan'axue2, Wang Xiaotian1,3 |
1.School of Business and Management, Jilin University, Changchun 130022 2.Institute of National Development and Security Studies, Jilin University, Changchun 130022 3.Research Center for Big Data Management, Jilin University, Changchun 130022 |
|
|
Abstract Global natural disasters and public health emergencies occur frequently, and the risk crisis of online public opinion in social media is increasing gradually. The key point in emergency management is how to effectively identify and alert the risk of online public opinion in social media in emergencies. In this study, based on the ISM-BN model, the public opinion risk identification and early warning model of emergency in social media network is constructed to strengthen the judgment of key issues and need of risk for early warning. We built the knowledge database of social media risk of emergencies through a knowledge map. We used interpretative structural modeling (ISM) to identify the causal path and hierarchical relationship of the risk factors of social media network public opinion in emergencies. The Bayesian network (BN) model was used to warn about the social media risks of emergencies. We achieved the closed-loop decision-making process of emergency risk knowledge acquisition, knowledge analysis and early warning decision. This study provides a new theory and research method of social media risk management in the emergency environment, and public opinion risk identification and early warning decision support for related public opinion supervision structures.
|
Received: 08 April 2022
|
|
|
|
1 中国气象数据. WMO: 过去50年, 平均每天就有一起与天气、气候和水有关的灾害发生[EB/OL]. (2021-09-24) [2022-04-05]. https://www.sohu.com/a/491775439_99963284. 2 World Meteorological Organization. State of climate in 2021: extreme events and major impacts[EB/OL]. (2021-10-31) [2022-04-05]. https://public.wmo.int/en/media/press-release/state-of-climate-2021-extreme-events-and-major-impacts. 3 国务院关于印发“十四五”数字经济发展规划的通知[EB/OL]. (2022-01-12) [2022-04-05]. http://www.gov.cn/zhengce/content/2022-01/12/content_5667817.htm. 4 中国互联网络信息中心. 第49次《中国互联网络发展状况统计报告》[EB/OL]. (2022-02-25) [2022-04-05]. http://www.cnnic.net.cn/n4/2022/0401/c88-1131.html. 5 Zhang X A, Cozma R. Risk sharing on Twitter: social amplification and attenuation of risk in the early stages of the COVID-19 pandemic[J]. Computers in Human Behavior, 2022, 126: 106983. 6 Chipidza W. The effect of toxicity on COVID-19 news network formation in political subcommunities on Reddit: an affiliation network approach[J]. International Journal of Information Management, 2021, 61: 102397. 7 Rao H R, Vemprala N, Akello P, et al. Retweets of officials’ alarming vs reassuring messages during the COVID-19 pandemic: implications for crisis management[J]. International Journal of Information Management, 2020, 55: 102187. 8 Janssen M, van der Voort H. Agile and adaptive governance in crisis response: lessons from the COVID-19 pandemic[J]. International Journal of Information Management, 2020, 55: 102180. 9 张鑫, 田雪灿, 刘鑫雅. 反复性视角下网络舆情风险评估指标体系研究[J]. 图书与情报, 2020(6): 123-135. 10 王建亚, 马榕培, 周毅. 网络信息内容安全风险:特征、演变及场景要素解构[J]. 图书情报工作, 2022, 66(5): 13-23. 11 郭苏琳, 黄微, 李吉. 区块链技术在网络舆情风险管理体系的应用研究[J]. 图书情报工作, 2020, 64(9): 19-26. 12 Wang Y, Hao H Y, Platt L S. Examining risk and crisis communications of government agencies and stakeholders during early-stages of COVID-19 on Twitter[J]. Computers in Human Behavior, 2021, 114: 106568. 13 Zhang X A, Borden J, Kim S. Understanding publics’ post-crisis social media engagement behaviors: an examination of antecedents and mediators[J]. Telematics and Informatics, 2018, 35(8): 2133-2146. 14 Liu J, Liu L Y, Tu Y, et al. Multi-stage Internet public opinion risk grading analysis of public health emergencies: an empirical study on Microblog in COVID-19[J]. Information Processing & Management, 2022, 59(1): 102796. 15 邓雯, 毛子骏, 徐晓林. 分歧与共识: 突发公共卫生事件下官方与民间风险沟通研究[J]. 情报杂志, 2022, 41(2): 119-125. 16 安璐, 陈苗苗, 李纲. 社交媒体环境下突发事件严重性评估和预警机制研究[J]. 图书情报工作, 2021, 65(5): 98-109. 17 王秉, 白明皓. 大数据环境下突发公共卫生事件风险信息感知与分析模型[J]. 情报杂志, 2021, 40(11): 176-181. 18 刘冰, 肖高飞, 晁世育. 重大突发公共卫生事件风险研判与决策模型构建研究[J]. 信息资源管理学报, 2021, 11(5): 17-26, 37. 19 Ullah F, Qayyum S, Thaheem M J, et al. Risk management in sustainable smart cities governance: a TOE framework[J]. Technological Forecasting and Social Change, 2021, 167: 120743. 20 张新时. 现代生态学的几个热点[J]. 植物学通报, 1990, 25(4): 1-6. 21 靖继鹏. 信息生态理论研究发展前瞻[J]. 图书情报工作, 2009, 53(4): 5-7. 22 王晰巍, 赵丹, 李嘉兴, 等. 新媒体环境下网络舆情演化模型及仿真研究——基于信息生态视角[J]. 情报学报, 2016, 35(10): 1011-1021. 23 姜景, 刘怡君. 基于信息生态学的微博舆论生态系统构建与机理研究[J]. 情报学报, 2015, 34(7): 675-682. 24 王铎, 王晰巍, 贾若男, 等. 大数据驱动的社交网络舆情生态性评价及实证研究[J]. 情报资料工作, 2020, 41(2): 56-63. 25 赵志耘, 孙星恺, 王晓, 等. 组织情报组织智能与系统情报系统智能: 从基于情景的情报到基于模型的情报[J]. 情报学报, 2020, 39(12): 1283-1294. 26 Chen X, Yuan Y Y, Orgun M A. Using Bayesian networks with hidden variables for identifying trustworthy users in social networks[J]. Journal of Information Science, 2020, 46(5): 600-615. 27 Zhang Y, Weng W G. A Bayesian network model for seismic risk analysis[J]. Risk Analysis, 2021, 41(10): 1809-1822. 28 宋英华, 刘含笑, 蒋新宇, 等. 基于知识元与贝叶斯网络的食品安全事故情景推演研究[J]. 情报学报, 2018, 37(7): 712-720. 29 娄国哲, 王兰成. 基于知识图谱的网络舆情知识组织方法研究[J]. 情报理论与实践, 2019, 42(1): 58-64. 30 王晰巍, 邱程程, 贾若男. 突发公共卫生事件网络谣言辟谣效果影响因素研究——以新冠疫情期间网络谣言为例[J]. 图书情报工作, 2021, 65(19): 26-35. 31 罗文华, 马晓晗. 基于贝叶斯网络的多级次网络舆情预警实证研究[J]. 情报科学, 2021, 39(7): 68-74. 32 兰月新, 张丽巍, 王华伟, 等. 面向风险监测的网络舆情异常感知与实证研究[J]. 现代情报, 2022, 42(3): 102-108. 33 陈震, 王静茹. 基于贝叶斯网络的网络舆情事件分析[J]. 情报科学, 2020, 38(4): 51-56, 69. 34 周汉杰, 王刚. 基于区块链技术的社交网络舆情风险管理掣肘与纾解[J]. 情报科学, 2021, 39(12): 118-125. 35 邓建高, 吴灵铭, 齐佳音, 等. 基于信息关联的负面网络舆情风险分级与预测研究[J]. 情报科学, 2022, 40(1): 38-43. 36 刘继, 武梦娇. 基于贝叶斯网络的网络舆情态势评估分析——以“新冠肺炎疫情”事件为例[J]. 情报杂志, 2021, 40(3): 187-192, 103. 37 杨柳, 徐宇昭, 邓春林. 高校网络舆情风险评估及预警研究[J]. 情报科学, 2022, 40(5): 65-72, 83. 38 田世海, 孙美琪, 张家毓. 基于贝叶斯网络的自媒体舆情反转预测[J]. 情报理论与实践, 2019, 42(2): 127-133. 39 胡峰. 从情报风险到风险情报: 循证视阈下公共卫生应急情报风险湍流感知[J]. 情报科学, 2022, 40(4): 79-89. 40 杨静, 朱莉萨, 朱镇远, 等. 基于贝叶斯网络的网络舆情案例匹配模型[J]. 现代情报, 2019, 39(10): 94-101. 41 高凯, 邹凯, 蒋知义, 等. 智慧城市信息安全风险评估指标体系构建[J]. 现代情报, 2022, 42(4): 110-119. 42 知微事见. 河南遭遇特大暴雨[EB/OL]. (2021-07-19) [2022-01-24]. https://ef.zhiweidata.com/event/8265e34c64b90e6510054700/trend. 43 Huang W C, Zhang Y, Kou X Y, et al. Railway dangerous goods transportation system risk analysis: an interpretive structural modeling and Bayesian network combining approach[J]. Reliability Engineering & System Safety, 2020, 204: 107220. 44 黄晓斌, 张明鑫. 面向重大突发事件的智库应急情报保障研究[J]. 情报学报, 2022, 41(1): 18-28. 45 张思龙, 王兰成, 娄国哲. 基于知识图谱的网络舆情研判系统研究[J]. 现代情报, 2021, 41(4): 10-16. 46 李纲, 王施运, 毛进, 等. 面向态势感知的国家安全事件图谱构建研究[J]. 情报学报, 2021, 40(11): 1164-1175. 47 徐元, 毛进, 李纲. 面向突发事件应急管理的社交媒体多模态信息分析研究[J]. 情报学报, 2021, 40(11): 1150-1163. 48 Harb J G D, Ebeling R, Becker K. A framework to analyze the emotional reactions to mass violent events on Twitter and influential factors[J]. Information Processing & Management, 2020, 57(6): 102372. 49 巴志超, 刘学太, 马亚雪, 等. 国家安全大数据综合信息集成的战略思考与路径选择[J]. 情报学报, 2021, 40(11): 1139-1149. 50 李明德, 朱妍. 复杂舆论场景中信息内容传播风险研究[J]. 情报杂志, 2021, 40(12): 112-119. 51 刘文博. 总体国家安全观视阈下文化安全情报体系建设的思考[J]. 情报理论与实践, 2021, 44(6): 44-49. 52 李品, 许林玉, 杨建林. 决策驱动的情报流程理论模型及其运行[J]. 情报学报, 2019, 38(1): 46-57. |
|
|
|