|
|
Evaluating the Effectiveness of Government Microblog Information Release in Emergency Situations |
An Lu1,2, Chen Miaomiao2 |
1.Center for Studies of Information Resources, Wuhan University, Wuhan 430072 2.School of Information Management, Wuhan University, Wuhan 430072 |
|
|
Abstract Governments information release by the new media has become an important way to bring innovation in the field of governance and social services. Evaluating the effectiveness of information release by government microblogging helps improve the government's ability to deal with public opinion in the big data environment. From the perspective of the new public management theory, this study proposes a method to evaluate the effectiveness of information release by government microblogging based on the “Cognition-Emotion-Behavior” theory and data envelopment analysis model. Microblog entries related to the southern flood in 2020 were collected. Thereafter, based on persuasion theory, we identified the influencing factors of the information release effectiveness of government microblogging. Seven regression models were established. The SHapley Additive exPlanations (SHAP) technique was used to analyze the importance of features and interaction of the LGBMRegressor model, which offers optimal comprehensive performance. The influencing mechanism of the effectiveness of government microblog information release is revealed. The obtained results provide numerous suggestions on enhancing the effectiveness of government microblog information release during public emergencies, which is of great significance in improving the ability of government microblogging to deal with public opinion in the digital era.
|
Received: 20 August 2021
|
|
|
|
1 国务院办公厅. 国务院办公厅关于推进政务新媒体健康有序发展的意见[EB/OL]. (2018-12-27) [2021-05-07]. http://www.gov.cn/zhengce/content/2018-12/27/content_5352666.htm?trs=1. 2 新浪科技. 微博2020用户发展报告: 用户群体继续呈现年轻化趋势[EB/OL]. (2021-03-12) [2021-05-07]. http://finance.sina.com.cn/tech/2021-03-12/doc-ikkntiak9143019.shtml?wm=3165_ooo3. 3 王国华, 魏程瑞, 杨腾飞, 等. 突发事件中政务微博的网络舆论危机应对研究——以上海踩踏事件中的@上海发布为例[J]. 情报杂志, 2015, 34(4): 65-70, 53. 4 何颖, 李思然. 新公共管理理论方法论评析[J]. 中国行政管理, 2014(11): 66-72. 5 Muehling D D, Sprott D E, Sprott D E. The power of reflection: an empirical examination of nostalgia advertising effects[J]. Journal of Advertising, 2004, 33(3): 25-35. 6 Yin D Z, Bond S D, Zhang H, et al. Anxious or angry? Effects of discrete emotions on the perceived helpfulness of online reviews[J]. MIS Quarterly, 2014, 38(2): 539-560. 7 Simpson P M, Horton S, Brown G. Male nudity in advertisements: a modified replication and extension of gender and product effects[J].Journal of the Academy of Marketing Science, 1996, 24(3): 257-262. 8 Cartwright D. Achieving change in people: some applications of group dynamics theory[J]. Human Relations, 1951, 4(4): 381-392. 9 彭国甫. 基于DEA模型的地方政府公共事业管理有效性评价——对湖南省11个地级州市政府的实证分析[J]. 中国软科学, 2005(8): 128-133. 10 Perloff R M. The dynamics of persuasion: communication and attitudes in the 21st century[M]. New York: Routledge, 1993. 11 Graham M, Avery E J. Government public relations and social media: an analysis of the perceptions and trends of social media use at the local government level[J]. Public Relations Journal, 2013, 7(4): 1-21. 12 Gao X, Lee J. E-government services and social media adoption: experience of small local governments in Nebraska state[J]. Government Information Quarterly, 2017, 34(4): 627-634. 13 Hong H. Government websites and social media’s influence on government-public relationships[J]. Public Relations Review, 2013, 39(4): 346-356. 14 Zhang W, Wang M, Zhu Y C. Does government information release really matter in regulating contagion-evolution of negative emotion during public emergencies? From the perspective of cognitive big data analytics[J]. International Journal of Information Management, 2020, 50: 498-514. 15 王光辉, 刘怡君, 迟钰雪. 舆论危机的异化极化效应研究[J]. 管理科学学报, 2017, 20(3): 149-161. 16 Kavanaugh A L, Fox E A, Sheetz S D, et al. Social media use by government: from the routine to the critical[J]. Government Information Quarterly, 2012, 29(4): 480-491. 17 王治莹, 李勇建. 政府干预下突发事件舆情传播规律与控制决策[J]. 管理科学学报, 2017, 20(2): 43-52, 62. 18 张礼才, 佘廉. 网络突发事件政府信息发布研究[J]. 现代情报, 2013, 33(4): 3-6. 19 周鸿铎. 传播学教程[M]. 北京: 中国书籍出版社, 2010. 20 陈强, 张杨一, 马晓悦, 等. 政务B站号信息传播效果影响因素与实证研究[J]. 图书情报工作, 2020, 64(22): 126-134. 21 陈远, 袁艳红. 微博信息传播效果实证研究[J]. 信息资源管理学报, 2012, 2(3): 28-34. 22 孙帅, 周毅. 政务微博对突发事件的响应研究——以“7·21”北京特大暴雨灾害事件中的“北京发布”响应表现为个案[J]. 电子政务, 2013(5): 30-40. 23 梁芷铭. 政务微博群的网络结构对传播效果的影响研究——政务微博话语权研究系列之十二[J]. 情报杂志, 2014, 33(11): 40-45. 24 余乐安, 李玲, 戴伟, 等. 危化品水污染事件中政府危机信息公布策略与网络舆情扩散研究: 基于多主体模型[J]. 管理评论, 2016, 28(8): 175-185. 25 Wang Y, Di Z R, Fan Y. Identifying and characterizing nodes important to community structure using the spectrum of the graph[J]. PLoS One, 2011, 6(11): e27418. 26 冯小东, 马捷, 蒋国银. 社会信任、理性行为与政务微博传播: 基于文本挖掘的实证研究[J]. 情报学报, 2019, 38(9): 954-965. 27 Zhang Y, Xu J P, Wu Y. A rumor control competition model considering intervention of the official rumor-refuting information[J]. International Journal of Modern Physics C, 2020, 31(9): 2050123. 28 Mondor L, Brownstein J S, Chan E, et al. Timeliness of nongovernmental versus governmental global outbreak communications[J]. Emerging Infectious Diseases, 2012, 18(7): 1184-1187. 29 纪雪梅, 翟冉冉, 王芳. 突发公共事件政务微博回应方式对公众评论情感的影响研究[J]. 情报理论与实践, 2020, 43(12): 126-132. 30 Latonero M, Shklovski I. Emergency management, Twitter, and social media evangelism[J]. International Journal of Information Systems for Crisis Response and Management, 2011, 3(4): Article 1. 31 Irfan Ali Shah, 王芳. 巴基斯坦政府门户网站公众初始接受的影响因素研究——基于使用意向和执行意向双重视角[J]. 情报学报, 2019, 38(5): 543-556. 32 Tang Z W, Zhang Z H, Chen M. A study on influence factors of government information publicity in mass incidents[C]// Proceedings of the 7th International Conference on Public Administration, 2011: 834-840. 33 Hu Q, Liu Z. The research on improving the influence of China’s government affair microblog in the government 2.0 era[C]// Proceedings of 2014 International Conference on Public Administration, 2014: 548-555. 34 Liu J F, Gao L. Analysis of topics and characteristics of user reviews on different online psychological counseling methods[J]. International Journal of Medical Informatics, 2021, 147: 104367. 35 Joulin A, Grave E, Bojanowski P, et al. Bag of tricks for efficient text classification[C]// Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2017: 427-431. 36 Zhou P, Shi W, Tian J, et al. Attention-based bidirectional long short-term memory networks for relation classification[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2016: 207-212. 37 Banker R D, Charnes A, Cooper W W. Some models for estimating technical and scale inefficiencies in data envelopment analysis[J]. Management Science, 1984, 30(9): 1078-1092. 38 Kaplan A M, Haenlein M. Users of the world, unite! The challenges and opportunities of social media[J]. Business Horizons, 2010, 53(1): 59-68. 39 Fowler J H, Christakis N A. Dynamic spread of happiness in a large social network: longitudinal analysis over 20 years in the Framingham Heart Study[J]. British Medical Journal, 2008, 337: a2338. 40 中华人民共和国民政部. 2020年11月份县以上行政区划代码[EB/OL]. (2021-01-04) [2021-04-02]. http://www.mca.gov.cn/article/sj/xzqh/2020/. 41 Github. SHAP[EB/OL]. (2018-02-14) [2021-03-15]. https://github.com/slundberg/shap. 42 Meng Y, Yang N H, Qian Z L, et al. What makes an online review more helpful: an interpretation framework using XGBoost and SHAP values[J]. Journal of Theoretical and Applied Electronic Commerce Research, 2021, 16(3): 466-490. 43 原福永, 冯静, 符茜茜, 等. 一种降低微博僵尸粉影响的方法[J]. 现代图书情报技术, 2012(5): 70-75. |
|
|
|