|
|
Characteristics of the Technology Impact of Breakthrough Papers in Biology and Medicine |
Chi Peijuan1, Ding Jielan1, Leng Fuhai2 |
1.National Science Library, Chinese Academy of Sciences, Beijing 100190 2.Institutes of Science and Development, Chinese Academy of Sciences, Beijing 100190 |
|
|
Abstract The identification of breakthrough papers is important to the forward-looking layout of innovation and scientific research management. Identifying and analyzing the characteristics of breakthrough papers are important for improving the current scientific research evaluation methods. The existing identification methods of breakthrough papers were analyzed; the existing problems were summarized; the theory that breakthrough papers may have high novelty was constructed; their high academic influence and technology influence were considered; and the effectiveness of the ternary metrological feature theory, proposed in this study, in the biomedical field was verified. Accordingly, the recognition method of breakthrough papers was constructed and applied to the early recognition of breakthrough papers; further, its recognition effect was verified. The novelty of breakthrough papers in the biomedical field is within the top 50% ranking in the field, and their academic and technical influence are within the top 1% ranking in the field, which confirms the effectiveness of the ternary metrological feature theory of breakthrough papers. The accuracy of the breakthrough paper recognition method proposed in this study is significantly higher than that of the comparison method. It is suitable for the analysis of large quantities of data, can significantly improve the efficiency of scientific research evaluation, and has reliable practicability.
|
Received: 17 August 2021
|
|
|
|
1 王海燕. 未来高影响力科技论文的识别理论与方法研究[D]. 北京: 中国科学院文献情报中心, 2013. 2 Kuhn T S. The structure of scientific revolutions[M]. Chicago: International Encyclopedia of Unified Science, 1962. 3 Hollingsworth J R. Scientific discoveries: an institutionalist and path-dependent perspective[M]// Biomedicine in the Twentieth Century: Practices, Policies, and Politics. Amsterdam: IOS Press, 2008: 317-353. 4 杜建, 孙轶楠, 张阳, 等. 变革性研究的科学计量学特征与早期识别方法[J]. 中国科学基金, 2019, 33(1): 88-98. 5 Wilkins A S. Are there ‘Kuhnian’ revolutions in biology?[J]. Bio-Essays, 1996, 18(9): 695-696. 6 Casadevall A, Fang F C. Revolutionary science[J]. mBio, 2016, 7(2): e00158. 7 Winnink J J, Tijssen R J W, van Raan A F J. Searching for new breakthroughs in science: how effective are computerised detection algorithms?[J]. Technological Forecasting and Social Change, 2019, 146: 673-686. 8 Heinze T, Shapira P, Rogers J D, et al. Organizational and institutional influences on creativity in scientific research[J]. Research Policy, 2009, 38(4): 610-623. 9 罗瑞. 基于熵值的领域科学突破主题的识别与预测[D]. 北京: 中国科学院大学(中国科学院文献情报中心), 2020. 10 Dahlin K B, Behrens D M. When is an invention really radical? Defining and measuring technological radicalness[J]. Research Policy, 2005, 34(5): 717-737. 11 Ponomarev I V, Williams D E, Hackett C J, et al. Predicting highly cited papers: a method for early detection of candidate breakthroughs[J]. Technological Forecasting and Social Change, 2014, 81: 49-55. 12 Garfield E. Who will win the Nobel Prize in economics? Here’s a forecast based on citation indicators[M]. Essays of an Information Scientist: Journalology, KeyWords Plus, and Other Essays. Philadelphia: ISI Press, 1990, 13: 83-87. 13 Schneider J W, Costas R. Identifying potential “breakthrough” publications using refined citation analyses: three related explorative approaches[J]. Journal of the Association for Information Science and Technology, 2017, 68(3): 709-723. 14 Small H, Boyack K W, Klavans R. Identifying emerging topics in science and technology[J]. Research Policy, 2014, 43(8): 1450-1467. 15 Clarivate demonstrates 2021 Nobel prediction success in every field of science and economics[EB/OL]. (2021-10-13). https://clarivate2020index.q4web.com/news-events/press-releases/news-details/2021/Clarivate-Demonstrates-2021-Nobel-Prediction-Success-in-Every-Field-of-Science-and-Economics/default.aspx. 16 Shibata N, Kajikawa Y, Matsushima K. Topological analysis of citation networks to discover the future core articles[J]. Journal of the American Society for Information Science and Technology, 2007, 58(6): 872-882. 17 Chakraborty T, Kumar S, Goyal P, et al. Towards a stratified learning approach to predict future citation counts[C]// Proceedings of the 14th IEEE/ACM Joint Conference on Digital Libraries. IEEE, 2014: 351-360. 18 Fu L D, Aliferis C F. Using content-based and bibliometric features for machine learning models to predict citation counts in the biomedical literature[J]. Scientometrics, 2010, 85(1): 257-270. 19 赵思喆. 基于回归模型的学术论文与学术期刊影响力预测研究[D]. 曲阜: 曲阜师范大学, 2018. 20 刘鑫. 基于时间点过程对科技文献引用行为的建模与预测[D]. 上海: 华东师范大学, 2018. 21 Roldan-Valadez E, Rios C. Alternative bibliometrics from impact factor improved the esteem of a journal in a 2-year-ahead annual-citation calculation: multivariate analysis of gastroenterology and hepatology journals[J]. European Journal of Gastroenterology & Hepatology, 2015, 27(2): 115-122. 22 Yan R, Huang C R, Tang J, et al. To better stand on the shoulder of giants[C]// Proceedings of the 12th ACM/IEEE-CS Joint Conference on Digital Libraries. New York: ACM Press, 2012: 51-60. 23 Bhat H S, Huang L H, Rodriguez S, et al. Citation prediction using diverse features[C]// Proceedings of the 2015 IEEE International Conference on Data Mining Workshop. IEEE, 2015: 589-596. 24 Lee C Y, Kwon O, Kim M, et al. Early identification of emerging technologies: a machine learning approach using multiple patent indicators[J]. Technological Forecasting and Social Change, 2018, 127: 291-303. 25 Davletov F, Aydin A S, Cakmak A. High impact academic paper prediction using temporal and topological features[C]// Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management. New York: ACM Press, 2014: 491-498. 26 Huang Y H, Hsu C N, Lerman K. Identifying transformative scientific research[C]// Proceedings of the 2013 IEEE 13th International Conference on Data Mining. IEEE, 2013: 291-300. 27 王海燕, 潘云涛, 马峥, 等. 基于科学研究问题成熟度的未来高影响力科技论文预测研究[J]. 情报学报, 2016, 35(1): 36-47. 28 Wu L F, Wang D S, Evans J A. Large teams have developed science and technology; small teams have disrupted it[J/OL]. SSRN Electronic Journal, (2017-09-08). http://dx.doi.org/10.2139/ssrn.3034125. 29 Wu L F, Wang D S, Evans J A. Large teams develop and small teams disrupt science and technology[J]. Nature, 2019, 566(7744): 378-382. 30 Chen C M. Predictive effects of structural variation on citation counts[J]. Journal of the American Society for Information Science and Technology, 2012, 63(3): 431-449. 31 Chen C M, Chen Y, Horowitz M, et al. Towards an explanatory and computational theory of scientific discovery[J]. Journal of Informetrics, 2009, 3(3): 191-209. 32 Min C, Bu Y, Wu D, et al. Identifying citation patterns of scientific breakthroughs: a perspective of dynamic citation process[J]. Information Processing & Management, 2021, 58(1): 102428. 33 Kleinberg J. Bursty and hierarchical structure in streams[J]. Data Mining and Knowledge Discovery, 2003, 7: 373-397. 34 Small H, Tseng H, Patek M. Discovering discoveries: identifying biomedical discoveries using citation contexts[J]. Journal of Informetrics, 2017, 11(1): 46-62. 35 杨雪梅, 王雪, 杜建, 等. 基于论文摘要和引文文本语料的突破性研究特征词识别[J]. 图书情报工作, 2020, 64(11): 125-132. 36 Wolcott H N, Fouch M J, Hsu E R, et al. Modeling time-dependent and -independent indicators to facilitate identification of breakthrough research papers[J]. Scientometrics, 2016, 107(2): 807-817. 37 Doboli S, Zhao F S, Doboli A. New measures for evaluating creativity in scientific publications[OL]. (2014-06-30). https://export.arxiv.org/ftp/arxiv/papers/1406/1406.7582.pdf. 38 Lee Y N, Walsh J P, Wang J. Creativity in scientific teams: unpacking novelty and impact[J]. Research Policy, 2015, 44(3): 684-697. 39 Amabile T M. Creativity in context: update to the social psychology of creativity[M]. Boulder: Westview Press, 1996. 40 Ayas M B, Sak U. Objective measure of scientific creativity: psychometric validity of the creative scientific ability test[J]. Thinking Skills and Creativity, 2014, 13: 195-205. 41 Kyung H K. Is creativity unidimensional or multidimensional? Analyses of the torrance tests of creative thinking[J]. Creativity Research Journal, 2006, 18(3): 251-259. 42 Piffer D. Can creativity be measured? An attempt to clarify the notion of creativity and general directions for future research[J]. Thinking Skills and Creativity, 2012, 7(3): 258-264. 43 叶亮, 路琳. 基于有用性与新颖性维度区分的创造力概念及其影响因素研究[J]. 科技管理研究, 2015, 35(18): 252-258. 44 Wang J, Veugelers R, Stephan P. Bias against novelty in science: a cautionary tale for users of bibliometric indicators[J]. Research Policy, 2017, 46(8): 1416-1436. 45 任全娥. 基于情报学的人文社会科学研究成果创新性测评[J]. 情报资料工作, 2009(2): 20-23. 46 van Meurs M, Dijkema L M, Zijlstra J G. Usefulness of medical conferences[J]. JAMA, 2012, 308(1): 31-33. 47 Kline S J, Rosenberg N. An overview of innovation[M]// Studies on Science and the Innovation Process: Selected Works of Nathan Rosenberg. Singapore: World Scientific, 2009: 173-203. 48 刘秋艳. 基于科学论文和专利数据的颠覆性技术识别方法研究[D]. 北京: 中国科学院文献情报中心, 2017. 49 裴云龙. 产学科学知识转移对企业技术创新绩效的影响效应研究[D]. 西安: 西安交通大学, 2017. 50 Tsai F S, Tang W Y, Chan K L. Evaluation of novelty metrics for sentence-level novelty mining[J]. Information Sciences, 2010, 180(12): 2359-2374. 51 逯万辉, 苏金燕, 余倩. 学术成果主题新颖性与学术引用的相关关系研究[J]. 情报资料工作, 2018(6): 68-73. 52 Uzzi B, Mukherjee S, Stringer M, et al. Atypical combinations and scientific impact[J]. Science, 2013, 342(6157): 468-472. 53 Wang J, Lee Y N, Walsh J P. Funding model and creativity in science: competitive versus block funding and status contingency effects[J]. Research Policy, 2018, 47(6): 1070-1083. 54 Boyack K W, Klavans R. Atypical combinations are confounded by disciplinary effects[C]// Proceedings of the 19th International Conference on Science and Technology Indicators, Leiden, The Netherlands, 2014. 55 Zhang X Y, Wang D S, Wang T. Inspiration or preparation? Explaining creativity in scientific enterprise[C]// Proceedings of the 25th ACM International Conference on Information and Knowledge Management. New York: ACM Press, 2016: 741-750. 56 Lano? M. The evaluation of competitive research funding: an application to French programs[D]. Bordeaux: Université de Bordeaux, 2018. 57 Carayol N, Agenor L, Oscar L. The right job and the job right: novelty, impact and journal stratification in science[J/OL]. SSRN Electronic Journal, (2019-03-05). http://dx.doi.org/10.2139/ssrn.3347326. 58 任海英, 王德营, 王菲菲. 主题词组合新颖性与论文学术影响力的关系研究[J]. 图书情报工作, 2017, 61(9): 87-93. 59 褚婧丹. 科技论文创新点原创性测度方法研究[D]. 北京: 中国科学院文献情报中心, 2020. 60 Boudreau K J, Guinan E C, Lakhani K R, et al. The novelty paradox & bias for normal science: evidence from randomized medical grant proposal evaluations[R]. Harvard Business School Working Paper, 2012: No.13-053. 61 Boudreau K J, Guinan E C, Lakhani K R, et al. Looking across and looking beyond the knowledge frontier: intellectual distance, novelty, and resource allocation in science[J]. Management Science, 2016, 62(10): 2765-2783. 62 Mishra S, Torvik V I. Quantifying conceptual novelty in the biomedical literature[J]. D-Lib Magazine: the Magazine of the Digital Library Forum, 2016, 22(9-10): 10.1045/september2016-mishra. 63 Chai S, Menon A. Breakthrough recognition: bias against novelty and competition for attention[J]. Research Policy, 2019, 48(3): 733-747. 64 Harnad S. Validating research performance metrics against peer rankings[J]. Ethics in Science and Environmental Politics, 2008, 8: 103-107. 65 Bornmann L, Tekles A, Zhang H H, et al. Do we measure novelty when we analyze unusual combinations of cited references? A validation study of bibliometric novelty indicators based on F1000Prime data[J]. Journal of Informetrics, 2019, 13(4): 100979. 66 高志. 杰出科学家的学术影响力变化规律研究——以诺贝尔自然科学奖获得者为例[D]. 北京: 中国科学院文献情报中心, 2017. 67 迟培娟, 陈挺, 宋秀芳, 等. 基于Altmetrics指标识别的研究热点对比分析——以生物学领域为例[J]. 数字图书馆论坛, 2019(5): 37-41. 68 Bj?rk R. The age at which Noble Prize research is conducted[J]. Scientometrics, 2019, 119(2): 931-939. 69 Wang J. Citation time window choice for research impact evaluation[J]. Scientometrics, 2013, 94(3): 851-872. 70 Ding C G, Hung W C, Lee M C, et al. Exploring paper characteristics that facilitate the knowledge flow from science to technology[J]. Journal of Informetrics, 2017, 11(1): 244-256. 71 Lo S C S. Scientific linkage of science research and technology development: a case of genetic engineering research[J]. Scientometrics, 2010, 82(1): 109-120. 72 Emami M, Riahinia N, Soheili F. Science-technology linkage in the field of medical and laboratory equipment[J]. Journal of Scientometric Research, 2020, 9(2): 88-95. 73 Chen L X. Do patent citations indicate knowledge linkage? The evidence from text similarities between patents and their citations[J]. Journal of Informetrics, 2017, 11(1): 63-79. 74 Narin F, Hamilton K S, Olivastro D. Linkage between agency-supported research and patented industrial technology[J]. Research Evaluation, 1995, 5(3): 183-187. 75 Roach M, Cohen W M. Lens or Prism? Patent citations as a measure of knowledge flows from public research[J]. Management Science, 2013, 59(2): 504-525. 76 Lemley M A, Sampat B. Examiner characteristics and patent office outcomes[J]. Review of Economics and Statistics, 2012, 94(3): 817-827. 77 Callaert J, Pellens M, Van Looy B. Sources of inspiration? Making sense of scientific references in patents[J]. Scientometrics, 2014, 98(3): 1617-1629. 78 Nagaoka S, Yamauchi I. The use of science for inventions and its identification: patent level evidence matched with survey[R]. Tokyo: The Research Institute of Economy, Trade and Industry, 2015: No.15-E-105. 79 Ahmadpoor M, Jones B F. The dual frontier: patented inventions and prior scientific advance[J]. Science, 2017, 357(6351): 583-587. 80 Hicks D, Breitzman A, Hamilton K, et al. Research excellence and patented innovation[J]. Science and Public Policy, 2000, 27(5): 310-320. 81 Poege F, Harhoff D, Gaessler F, et al. Science quality and the value of inventions[J]. Science Advances, 2019, 5(12): eaay7323. 82 Ke Q. Comparing scientific and technological impact of biomedical research[J]. Journal of Informetrics, 2018, 12(3): 706-717. 83 Patelli A, Cimini G, Pugliese E, et al. The scientific influence of nations on global scientific and technological development[J]. Journal of Informetrics, 2017, 11(4): 1229-1237. 84 Liaw Y C, Chan T Y, Fan C Y, et al. Can the technological impact of academic journals be evaluated? The practice of non-patent reference (NPR) analysis[J]. Scientometrics, 2014, 101(1): 17-37. 85 Huang M H, Huang W T, Chen D Z. Technological impact factor: an indicator to measure the impact of academic publications on practical innovation[J]. Journal of Informetrics, 2014, 8(1): 241-251. 86 Jefferson O A, Jaffe A, Ashton D, et al. Mapping the global influence of published research on industry and innovation[J]. Nature Biotechnology, 2018, 36(1): 31-39. 87 科睿唯安. 2017全球最具创新力政府研究机构25强[J]. 科技中国, 2017(4): 61-63. 88 Adams J. Early citation counts correlate with accumulated impact[J]. Scientometrics, 2005, 63(3): 567-581. 89 Hicks D, Wouters P, Waltman L, et al. The Leiden Manifesto for research metrics[J]. Nature, 2015, 520(7548): 429-431. 90 孙昌朋, 林萍, 陈望忠, 等. 国际重大创新性论文的发表倾向分析——以1989—2019年诺贝尔生理学或医学奖获得者论文为例[J]. 中国科技期刊研究, 2020, 31(12): 1495-1500. 91 迟培娟. 生物医学领域突破性论文的计量特征和识别研究[D]. 北京: 中国科学院文献情报中心, 2021. |
|
|
|