|
|
Review of Clickstream Data Analysis and Visualization Studies |
Jiang Tingting1,2, Xu Yaping1, Guo Qian1 |
1. School of Information Management, Wuhan University, Wuhan 430072;
2. Center for Studies of Information Resources, Wuhan University, Wuhan 430072 |
|
|
Abstract This review provides an overview of studies on clickstream data analysis and visualization performed between 2000 and 2017. In-depth analysis and comparisons have been performed on the visual characteristics of visualization studies available in literature. The analysis reveals that the existing visualizations (1) usually involve users’ visiting footprints, movements, and pathways as components of representation, (2) present them as directed graphs, sequence diagrams, line graphs, network graphs, cloud maps, Sankey diagrams, matrix graphs, stack graphs, and multiply graphs, and (3) support user interaction through features such as overview, zoom, filter, details-on-demand, relate, history, and extract. This review suggests that future studies should focus on the application of big data technologies in clickstream data analysis, visualization of mobile clickstream data, and user testing for visualization evaluation.
|
Received: 12 June 2017
|
|
|
|
[1] Burby J, Brown A, WAA Standards Committee.Web analytics definitions[M]. Washington DC: Web Analytics Association, 2007.
[2] Beasley M.Practical Web analytics for user experience: How analytics can help you understand your users[M]. Waltham: Morgan Kaufmann Publishers Inc., 2013.
[3] Waisberg D, Kaushik A.Web Analytics 2.0: empowering customer centricity[J]. The original Search Engine Marketing Journal, 2009, 2(1): 5-11.
[4] Jansen B J.Understanding user-web interactions via web analytics[M]. Morgan and Claypool Publishers, 2009: 1-102.
[5] Jansen B J.Search log analysis: What it is, what’s been done, how to do it[J]. Library and Information Science Research, 2006, 28(3): 407-432.
[6] Montgomery A L, Li S, Srinivasan K, et al.Modeling online browsing and path analysis using clickstream data[J]. Marketing Science, 2004, 23(4): 579-595.
[7] Sen A, Dacin P A, Pattichis C.Current trends in web data analysis[J]. Communications of the ACM, 2006, 49(11): 85-91.
[8] Jiang T.Characterizing and evaluating users’ information seeking behavior in social tagging systems[D]. Pittsburgh: University of Pittsburgh, 2010: 50-55.
[9] Card S K, MacKinlay J D, Shneiderman B. Readings in information visualization: using vision to think[M]. San Francisco: Morgan Kaufmann, 1999.
[10] Ware C.Information visualization: perception for design[M]. San Francisco: Morgan Kaufmann, 2012.
[11] Butler D M, Almond J C, Bergeron R D, et al.Visualization reference models[C]// Proceedings of the 4th Conference on Visualization’93. IEEE Computer Society, 1993: 337-342.
[12] Teyseyre A R, Campo M R.An overview of 3D software visualization[J]. IEEE Transactions on Visualization and Computer Graphics, 2009, 15(1): 87-105.
[13] Zhu B, Chen H.Information visualization[J]. Annual Review of Information Science and Technology, 2005, 39(1): 139-177.
[14] McGrath M B, Brown J R. Visual learning for science and engineering[J]. IEEE Computer Graphics and Applications, 2005, 25(5): 56-63.
[15] Spence R.Information visualization: Design for interaction (2nd Edition)[M]. New York: Prentice-Hall, 2007.
[16] Hong J I, Landay J A.WebQuilt: a framework for capturing and visualizing the web experience[C]// Proceedings of the 10th International Conference on World Wide Web. Association for Computing Machinery, 2001: 717-724.
[17] Waterson S J. WebQuilt: A visual analysis tool for understanding Web usability clickstream data[EB/OL]. [2017-04-20]. http://citeseerx. ist.psu.edu/viewdoc/download;jsessionid=3225F23260FBB3AE70FC1F0147386F91?doi=10.1.1.7.5396&rep=rep1&type=pdf.
[18] Brainerd J, Becker B.Case study: E-commerce clickstream visualization[C]// Proceedings of the IEEE Symposium on Information Visualization. IEEE Computer Society, 2001: 153-156.
[19] Hofgesang P I.Web usage mining structuring semantically enriched clickstream data[D]. Amsterdam: Vrije Universiteit, 2004: 1-84.
[20] Hofgesang P I, Kowalczyk W.Analysing clickstream data: From anomaly detection to visitor profiling[C]// Association for Computing Machinery. ECML/PKDD Discovery Challenge. Porto, 2005.
[21] Aguiar E, Nagrecha S, Chawla N V.Predicting online video engagement using clickstreams[C]// Proceedings of IEEE International Conference on Data Science and Advanced Analytics. IEEE, 2015: 1-10.
[22] Cadez I, Heckerman D, Meek C, et al.Visualization of navigation patterns on a web site using model-based clustering[C]// Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Association for Computing Machinery, 2000: 280-284.
[23] Wei J, Shen Z, Sundaresan N, et al.Visual cluster exploration of web clickstream data[C]// Proceedings of 2012 IEEE Conference on Visual Analytics Science and Technology. IEEE, 2012: 3-12.
[24] Shen Z, Wei J, Sundaresan N, et al.Visual analysis of massive web session data[C]// Proceedings of 2012 IEEE Symposium on Large Data Analysis and Visualization. IEEE, 2012: 65-72.
[25] Ting I H, Kimble C, Kudenko D.Visualizing and classifying the pattern of user’s browsing behavior for website design recommendation[C]// Proceedings of the International Workshop on Knowledge Discovery in Data Stream. Pittsburg, 2004: 101-102.
[26] Ting I H, Kimble C, Kudenko D.A pattern restore method for restoring missing patterns in server side clickstream data[C]// Proceedings of the 7th Asia-Pacific Web Conference on Web Technologies Research and Development. Berlin:, Springer-Verlag, 2005: 501-512.
[27] Clark L, Ting I H, Kimble C, et al.Combining ethnographic and clickstream data to identify user Web browsing strategies[J]. Information Research, 2006, 11(2): 249.
[28] Ting I H, Clark L, Kimble C, et al.APD-A tool for identifying behavioural patterns automatically from clickstream data[C]// Knowledge-Based Intelligent Information and Engineering Systems and the XVII Italian Workshop on Neural Networks on Proceedings of the 11th International Conference. Berlin: Springer -Verlag, 2007: 66-73.
[29] Scott J.Social network analysis[M]. London: SAGE, 2012.
[30] Freeman L C.The gatekeeper, pair-dependency and structural centrality[J]. Quality and Quantity, 1980, 14(4): 585-592.
[31] Freeman L C.Centrality in social networks conceptual clarification[J]. Social Networks, 1978, 1(3): 215-239.
[32] Ortega J L, Aguillo I F.Network visualisation as a way to the web usage analysis[J]. ASLIB Proceedings: New Information Perspective, 2013, 65(1): 40-53.
[33] Kannappady S, Mudur S P, Shiri N.Clickstream visualization based on usage patterns[J]. Computer Vision, Graphics and Image Processing, 2006: 339-351.
[34] Jiang T, Chi Y, Gao H.A clickstream data analysis of Chinese academic library OPAC users’ information behavior[J]. Library and Information Science Research, 2017, 39(3):213-223.
[35] Zhao J, Liu Z, Dontcheva M, et al.MatrixWave: Visual comparison of event sequence data[C]//. Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems. Association for Computing Machinery, 2015: 259-268.
[36] Shi C L, Fu S W, Chen Q, et al.VisMOOC: Visualizing video clickstream data from massive open online course[C]// Proceedings of 2014 IEEE Conference on Visual Analytics.Science and Technology. IEEE, 2014: 159-166.
[37] Wang Y, Chen Z T, Li Q, et al.Animated narrative visualization for video clickstream data[C]// SIGGRAPH Asia 2016 Symposium on Visualization. New York: ACM Press, 2016: Article No. 11.
[38] Lee J, Podlaseck M, Schonberg E, et al.Visualization and analysis of clickstream data of online stores for understanding web merchandising[J]. Data Mining and Knowledge Discovery, 2001, 5(1/2): 59-84.
[39] Inselberg A.Parallel coordinates[M]. New York: Springer, 2009, 43(4): 199-233.
[40] Jog N, Shneiderman B.Interactive smooth zooming in a starfield information visualizer, University of Maryland Technical Reports[R]. CS-TR-3286, 1994.
[41] Wang G, Zhang X, Tang S, et al.Unsupervised clickstream clustering for user behavior analysis[C]// Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems. Association for Computing Machinery, 2016: 225-236.
[42] Shneiderman B, Plaisant C.Designing the user interface: strategies for effective human-computer interaction[M]. Boston: Addison-Wesley, 2005: 40-50. |
|
|
|