|
|
On the Concepts and Approaches of Computable Knowledge in Biomedical and Health Sciences |
Du Jian1, Kong Guilan1, Li Pengfei1,2, Bai Yongmei1, Zhang Luxia1 |
1.National Institute of Health Data Science, Peking University, Beijing 100191 2.Advanced Institute of Information Technology, Peking University, Hangzhou 226019 |
|
|
Abstract “Computable knowledge” focuses on transforming human-readable knowledge into machine-executable forms by extracting and programming processes on digital knowledge objects. It can be regarded as the “keystone” in supporting the massive knowledge application in the cycle of learning health systems, i.e., “from data to knowledge, from knowledge to practice, and then from practice to data.” This concept has become a new field of research in health data science, and it also provides a new paradigm for digital library and knowledge computation research in the field of library and information science. This study proposes two approaches to making medical knowledge computable. One is a data-mining-driven approach. Computable knowledge can be extracted from the data in tables of medical literature, expressed in code, and managed in the Knowledge Grid (K-Grid). For example, a machine-executable version of the predictive model can be encoded in any appropriate computer language. When given an instance of data about an individual, this encoded model can quickly and accurately generate a risk prediction or useful advice. The second is a text-mining-driven approach that extracts Subject-Predicate-Object (SPO) triples from an unstructured text, such as the assertions in clinical guidelines and medical literature. By incorporating the evidence and data into a given SPO triple, we can calculate the confidence score for such a knowledge unit. The SPO triples can be stored in graph databases (K-Graph) for automatic question answering for a specific condition, such as treatment recommendations ranked by the confidence level to support medical intervention decision-making. Several challenges for the development and application of computable medical knowledge have been discussed. We hope to introduce an interdisciplinary approach to investigating computable medical knowledge and provide conceptual and technological preparations for the learning health system in China.
|
Received: 01 February 2021
|
|
|
|
1 叶鹰, 马费成. 数据科学兴起及其与信息科学的关联[J]. 情报学报, 2015, 34(6): 575-580. 2 Zhu L S, Zheng W J. Informatics, data science, and artificial intelligence[J]. JAMA, 2018, 320(11): 1103-1104. 3 Fortunato S, Bergstrom C T, B?rner K, et al. Science of science[J]. Science, 2018, 359(6379): eaao0185. 4 Milojevi? S. Quantifying the cognitive extent of science[J]. Journal of Informetrics, 2015, 9(4): 962-973. 5 马费成. 情报学的进展与深化[J]. 情报学报, 1996, 15(5): 22-28. 6 文庭孝, 罗贤春, 刘晓英, 等. 知识单元研究述评[J]. 中国图书馆学报, 2011, 37(5): 75-86. 7 Friedman C P, Flynn A J. Computable knowledge: an imperative for Learning Health Systems[J]. Learning Health Systems, 2019, 3(4): e10203. 8 Williams M, Richesson R L, Bray B E, et al. Summary of third annual MCBK public meeting: mobilizing computable biomedical knowledge—accelerating the second knowledge revolution[J]. Learning Health Systems, 2021, 5(1): e10255. 9 Wyatt J, Scott P. Computable knowledge is the enemy of disease[J]. BMJ Health & Care Informatics, 2020, 27(2): e100200. 10 Kilicoglu H, Rosemblat G, Fiszman M, et al. Broad-coverage biomedical relation extraction with SemRep[J]. BMC Bioinformatics, 2020, 21(1): 188. 11 索传军, 盖双双. 知识元的内涵、结构与描述模型研究[J]. 中国图书馆学报, 2018, 44(4): 54-72. 12 Flynn A J, Friedman C P, Boisvert P, et al. The Knowledge Object Reference Ontology (KORO): a formalism to support management and sharing of computable biomedical knowledge for learning health systems[J]. Learning Health Systems, 2018, 2(2): e10054. 13 Yang X L, Li J X, Hu D S, et al. Predicting the 10-year risks of atherosclerotic cardiovascular disease in Chinese population: the China-PAR project (prediction for ASCVD risk in China)[J]. Circulation, 2016, 134(19): 1430-1440. 14 Callahan T J, Tripodi I J, Pielke-Lombardo H, et al. Knowledge-based biomedical data science[J]. Annual Review of Biomedical Data Science, 2020, 3: 23-41. 15 Zhang D C, He D Q. Enhancing clinical decision support systems with public knowledge bases[J]. Data and Information Management, 2017, 1(1): 49-60. 16 覃露, 徐晓巍, 丁玲玲, 等. 面向决策支持的临床指南知识表示方法研究[J]. 中华医学图书情报杂志, 2020, 29(2): 1-8. 17 朱超宇, 刘雷. 基于知识图谱的医学决策支持应用综述[J]. 数据分析与知识发现, 2020, 4(12): 26-32. 18 Bastian H, Glasziou P, Chalmers I. Seventy-five trials and eleven systematic reviews a day: how will we ever keep up?[J]. PLoS Medicine, 2010, 7(9): e1000326. 19 Dunn A G, Bourgeois F T. Is it time for computable evidence synthesis?[J]. Journal of the American Medical Informatics Association, 2020, 27(6): 972-975. 20 Alper B S, Richardson J E, Lehmann H P, et al. It is time for computable evidence synthesis: the COVID-19 knowledge accelerator initiative[J]. Journal of the American Medical Informatics Association, 2020, 27(8): 1338-1339. 21 Elkin P L, Carter J S, Nabar M, et al. Drug knowledge expressed as computable semantic triples[J]. Studies in Health Technology and Informatics, 2011, 166: 38-47. 22 Malec S A, Boyce R D. Exploring novel computable knowledge in structured drug product labels[J]. AMIA Joint Summits on Translational Science Proceedings, 2020, 2020: 403-412. 23 温有奎, 焦玉英. 基于语义三元组的电子病历潜在知识发现研究[J]. 情报学报, 2011, 30(7): 675-681. 24 Li X Y, Peng S Y, Du J. Towards medical knowmetrics: representing and computing medical knowledge using semantic predications as the knowledge unit and the uncertainty as the knowledge context[J]. Scientometrics, 2021, 126(7): 6225-6251. 25 Kilicoglu H, Shin D, Fiszman M, et al. SemMedDB: a PubMed-scale repository of biomedical semantic predications[J]. Bioinformatics, 2012, 28(23): 3158-3160. 26 Elsworth B, Gaunt T R. MELODI Presto: a fast and agile tool to explore semantic triples derived from biomedical literature[J]. Bioinformatics, 2021, 37(4): 583-585. 27 Mons B, van Haagen H, Chichester C, et al. The value of data[J]. Nature Genetics, 2011, 43(4): 281-283. 28 Groth P, Gibson A, Velterop J. The anatomy of a nanopublication[J]. Information Services & Use, 2010, 30(1/2): 51-56. 29 Fabris E, Kuhn T, Silvello G. Nanocitation: complete and interoperable citations of nanopublications[C]// Proceedings of the Italian Conference on Digital Libraries. Cham: Springer, 2020: 182-187. 30 Williams A J, Harland L, Groth P, et al. Open PHACTS: semantic interoperability for drug discovery[J]. Drug Discovery Today, 2012, 17(21/22): 1188-1198. 31 Fabris E, Kuhn T, Silvello G. A framework for citing nanopublications[C]// Proceedings of the International Conference on Theory and Practice of Digital Libraries. Cham: Springer, 2019: 70-83. 32 Wong D, Peek N. Does not compute: challenges and solutions in managing computable biomedical knowledge[J]. BMJ Health & Care Informatics, 2020, 27(2): e100123. 33 Mons B. FAIR science for social machines: let’s share metadata knowlets in the Internet of FAIR data and services[J]. Data Intelligence, 2019, 1(1): 22-42. 34 Walsh K, Wroe C. Mobilising computable biomedical knowledge: challenges for clinical decision support from a medical knowledge provider[J]. BMJ Health & Care Informatics, 2020, 27(2): e100121. 35 杜建. 医学知识不确定性测度的进展与展望[J]. 数据分析与知识发现, 2020, 4(10): 14-27. 36 李丹亚, 胡铁军, 李军莲, 等. 中文一体化医学语言系统的构建与应用[J]. 情报杂志, 2011, 30(2): 147-151. 37 浙江省数字医疗卫生技术研究院. OMAHA白皮书第十三期发布: 促进医学知识价值开发: 临床指南的计算机化[EB/OL]. (2019-07-31) [2021-02-25]. https://www.omaha.org.cn/index.php?g=&m=article&a=index&id=237&cid=11. 38 Swierstra T, Efstathiou S. Knowledge repositories. In digital knowledge we trust[J]. Medicine, Health Care and Philosophy, 2020, 23(4): 543-547. 39 Efstathiou S, Nydal R, Laegreid A, et al. Scientific knowledge in the age of computation: explicated, computable and manageable?[J]. THEORIA: An International Journal for Theory, History and Foundations of Science, 2019, 34(2): 213-236. 40 Smalheiser N R. Rediscovering Don Swanson: the past, present and future of literature-based discovery[J]. Journal of Data and Information Science, 2017, 2(4): 43-64. 41 吴家睿. 确定的不确定性与不确定的确定性——治疗疾病决策与控制传染病决策之差异[J]. 医学与哲学, 2020, 41(8): 1-6, 70. 42 Andermann A, Pang T, Newton J N, et al. Evidence for Health II: overcoming barriers to using evidence in policy and practice[J]. Health Research Policy and Systems, 2016, 14: 17. 43 Zhang L X, Wang H B, Li Q Z, et al. Big data and medical research in China[J]. BMJ, 2018, 360: j5910. |
|
|
|