|
|
Construction of National Security Event Map and Its Application for Situation Awareness |
Li Gang1,2, Wang Shiyun1,2, Mao Jin1,2, Li Baiyang1 |
1.Center for Studies of Information Resources, Wuhan University, Wuhan 430072 2.School of Information Management, Wuhan University, Wuhan 430072 |
|
|
Abstract National security events related big data creates challenges for the management of those events. When a crisis occurs, determining how to integrate massive, multi-source, heterogeneous, and dynamically changing national security event-related data, and then extracting valuable intelligence so that a scenario description and situational understanding of national security events can be formed, is critical for managing national security events. Therefore, according to the intelligence needs of situation awareness during such events, this article proposes a new national security big data organization model: the National Security Event Map. We further explore its automatic construction methodology and approaches for situation awareness that can be based on the event map. The National Security Event Map can achieve knowledge representation, structured organization, and effective management of events, entities, and their relationships, which could enrich information organization theory and methodology in information science. It can also be used for comprehensive monitoring and perception of national security incidents to provide intelligence support for related management decisions.
|
Received: 05 February 2021
|
|
|
|
1 王能干, 王坚, 凌卫青. 基于本体的突发事件应急服务模型研究[J]. 计算机与现代化, 2014(1): 192-195, 200. 2 中央国家安全委员会第一次会议召开, 习近平发表重要讲话[EB/OL]. (2014-04-15) [2021-10-30]. http://www.gov.cn/xinwen/2014-04/15/content_2659641.htm. 3 曾大军, 曹志冬. 突发事件态势感知与决策支持的大数据解决方案[J]. 中国应急管理, 2013(11): 15-23. 4 巴志超, 李纲, 安璐, 等. 国家安全大数据综合信息集成: 应用架构与实现路径[J]. 中国软科学, 2018(7): 9-20. 5 赵一鸣. 知识图谱是一种知识组织系统吗?[J]. 图书情报知识, 2017(5): 2. 6 丁效, 李忠阳, 刘挺. 事理图谱: 事件演化的规律和模式[EB/OL]. (2019-07-23) [2021-05-07]. https://cloud.tencent.com/developer/article/1469579. 7 杨月华, 杜军平, 梁美玉. 基于本体的突发事件领域知识建模[J]. 中南大学学报(自然科学版), 2011, 42(S1): 859-864. 8 刘宗田, 黄美丽, 周文, 等. 面向事件的本体研究[J]. 计算机科学, 2009, 36(11): 189-192, 199. 9 朱文跃, 刘宗田. 基于事件本体的突发事件领域知识建模[J]. 计算机工程与应用, 2018, 54(21): 148-155. 10 马雷雷, 李宏伟, 连世伟, 等. 一种自然灾害事件领域本体建模方法[J]. 地理与地理信息科学, 2016, 32(1): 12-17. 11 黄风华, 晏路明. 基于Jena的台风灾害领域本体模型推理[J]. 计算机应用, 2013, 33(3): 771-775, 779. 12 陈泽强, 陈能成, 杜文英, 等. 一种洪涝灾害事件信息建模方法[J]. 地球信息科学学报, 2015, 17(6): 644-652. 13 漆桂林, 高桓, 吴天星. 知识图谱研究进展[J]. 情报工程, 2017, 3(1): 4-25. 14 杜志强, 李钰, 张叶廷, 等. 自然灾害应急知识图谱构建方法研究[J]. 武汉大学学报(信息科学版), 2020, 45(9): 1344-1355. 15 李泽荃, 徐淑华, 李碧霄, 等. 基于知识图谱的灾害场景信息融合技术[J]. 华北科技学院学报, 2019, 16(2): 1-5. 16 陶坤旺, 赵阳阳, 朱鹏, 等. 面向一体化综合减灾的知识图谱构建方法[J]. 武汉大学学报(信息科学版), 2020, 45(8): 1296-1302. 17 李攀成. 公共安全领域知识图谱的知识融合技术研究[D]. 成都: 电子科技大学, 2019. 18 Endsley M R. Design and evaluation for situation awareness enhancement[J]. Proceedings of the Human Factors Society Annual Meeting, 1988, 32(2): 97-101. 19 Endsley M R. Toward a theory of situation awareness in dynamic systems[J]. Human Factors, 1995, 37(1): 32-64. 20 Theureau J. Nuclear reactor control room simulators: human factors research and development[J]. Cognition, Technology & Work, 2000, 2(2): 97-105. 21 崔令飞, 郭永红, 邵鹏志, 等. 运用时空大数据增强战场态势感知能力[J]. 国防科技, 2021, 42(2): 127-132. 22 杨霄, 张澍裕, 邓晓军. 面向战场综合态势感知的物联网技术应用[C]// 中国航天电子技术研究院科学技术委员会2020年学术年会论文集. 北京: 中国航天电子技术研究院科学技术委员会航天电子发展战略研究中心, 2020: 612-617. 23 Bass T. Multisensor data fusion for next generation distributed intrusion detection systems[C]// Proceedings of the IRIS National Symposium on Sensor and Data Fusion. West Lafayette: COAST Laboratory, Purdue University, 1999: 24-27. 24 席荣荣, 云晓春, 金舒原, 等. 网络安全态势感知研究综述[J]. 计算机应用, 2012, 32(1): 1-4, 59. 25 陶源, 黄涛, 张墨涵, 等. 网络安全态势感知关键技术研究及发展趋势分析[J]. 信息网络安全, 2018(8): 79-85. 26 Sakaki T, Matsuo Y, Kurihara S, et al. The possibility of social media analysis for disaster management[C]// Proceedings of the 2013 IEEE Region 10 Humanitarian Technology Conference. IEEE, 2013: 238-243. 27 Laylavi F. A framework for adopting Twitter data in emergency response[D]. Victoria: The University of Melbourne, 2017. 28 Huang Q Y, Xiao Y. Geographic situational awareness: mining tweets for disaster preparedness, emergency response, impact, and recovery[J]. ISPRS International Journal of Geo-Information, 2015, 4(3): 1549-1568. 29 Power R, Robinson B, Colton J, et al. Emergency situation awareness: Twitter case studies[C]// Proceedings of the International Conference on Information Systems for Crisis Response and Management in Mediterranean Countries. Cham: Springer, 2014: 218-231. 30 Salfinger A, Girtelschmid S, Pr?ll B, et al. Crowd-sensing meets situation awareness: a research roadmap for crisis management[C]// Proceedings of the 2015 48th Hawaii International Conference on System Sciences. IEEE, 2015: 153-162. 31 谢新洲, 周晓英, 李月琳, 等. 突发公共卫生事件中的科学应对与思考: 图情专家谈新冠疫情[J]. 信息资源管理学报, 2020, 10(2): 4-16. 32 Xu Z, Zhang H, Hu C P, et al. Building knowledge base of urban emergency events based on crowdsourcing of social media[J]. Concurrency and Computation: Practice and Experience, 2016, 28(15): 4038-4052. 33 新华社. 抗击新冠肺炎疫情的中国行动[EB/OL]. (2020-06-07) [2021-05-07]. http://www.gov.cn/zhengce/2020-06/07/content_5517737.htm. 34 全国人大法规库. 中华人民共和国传染病防治法(修订)[EB/OL]. (2005-08-01) [2021-05-07]. http://www.gov.cn/banshi/2005-08/01/content_19023.htm. 35 唐旭丽, 马费成, 傅维刚, 等. 知识关联视角下的金融知识表示及风险识别[J]. 情报学报, 2019, 38(3): 286-298. 36 郭庆. 中文事件抽取技术研究[D]. 南京: 南京师范大学, 2018. 37 孙辉. 事件时序关系识别的研究与实现[D]. 哈尔滨: 哈尔滨工业大学, 2010. 38 黄一龙. 中文事件关系识别与推理方法研究[D]. 苏州: 苏州大学, 2017. 39 中文突发事件语料库[EB/OL]. (2019-09-27) [2021-05-07]. https://github.com/shijiebei2009/CEC-Corpus. 40 刘如, 周京艳, 李佳娱, 等. 基于数据科学思维的情报事理逻辑揭示与科学解读[J]. 情报理论与实践, 2018, 41(8): 22-27. 41 Pennington J, Socher R, Manning C D. GloVe: global vectors for word representation[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2014: 1532-1543. 42 孙盼, 王琪, 万怀宇. 结合事件链和事理图谱的脚本事件预测方法[J/OL]. 计算机工程. (2021-04-26) [2021-05-07]. https://doi.org/10.19678/j.issn.1000-3428.0060781. 43 朱木易洁, 鲍秉坤, 徐常胜. 知识图谱发展与构建的研究进展[J]. 南京信息工程大学学报(自然科学版), 2017, 9(6): 575-582. 44 胡芳槐. 基于多种数据源的中文知识图谱构建方法研究[D]. 上海: 华东理工大学, 2015. 45 Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word representations in vector space[OL]. (2013-09-07). https://arxiv.org/pdf/1301.3781.pdf. 46 Devlin J, Chang M W, Lee K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: Association for Computational Linguistics, 2019: 4171-4186. 47 范维澄, 翁文国, 吴刚, 等. 国家安全管理中的基础科学问题[J]. 中国科学基金, 2015, 29(6): 436-443. |
|
|
|