|
|
Emotional Load, User Stickiness, and Information Symbiosis Bias: Dynamic Analysis Based on Panel Data of Emergency Events from 2015 to 2020 |
Yang Changzheng |
School of Journalism & New Media, Xi'an Jiaotong University, Xi'an 710049 |
|
|
Abstract To find the influence mechanism of information symbiosis, this paper explores the relationship between emotional load, user stickiness, and information symbiosis. The paper uses China’s emergency events panel data from 2015 to 2020, for example sina microblog, and employs VAR, panel data, and state space models to analyze the relationship between the emotional load, user stickiness, and information symbiosis. The findings of the research can be categorized into the following. First, in the process of information symbiosis, emotional load and user stickiness has a significant impact on information symbiosis, and the impact of emotional load is greater than that of user stickiness. In the process of emotional load fluctuations, the autocorrelation effect of emotional load has the greatest impact on information symbiosis, and the effects of information symbiosis and user stickiness are greater than other exogenous factors. Second, the marginal impact of user stickiness on information symbiosis is greater than that of emotional load; the marginal impact of information symbiosis on emotional load is greater than that of user stickiness; and the marginal impact of emotional load on user stickiness is greater than that of information symbiosis. Third, the contribution rate of emotional load to information symbiosis fluctuation is greater than that of user stickiness; the contribution rate of emotional load to user stickiness fluctuation is greater than that of information symbiosis; and the contribution rate of information symbiosis to emotional load fluctuation is greater than that of user stickiness. Fourth, the interaction effects between emotional load, user stickiness, and information symbiosis vary across demographic groups. To conclude, driving strategies and specific measures can be formulated.
|
Received: 28 April 2020
|
|
|
|
1 赵金楼, 高宏玉. 基于随机Petri网的网络群体事件演化模型研究[J]. 情报学报, 2015, 34(10): 1040-1047. 2 阳长征. 危机事件中网络信息表征对用户持续分享意愿影响研究[J]. 图书情报工作, 2019, 63(21): 105-116. 3 乔欢. 信息行为学[M]. 北京: 北京师范大学出版社, 2010. 4 夏立新, 周鼎, 叶光辉, 等. 情感负荷视角下探索式搜索学习效果的影响因素[J]. 图书情报知识, 2020(4): 133-141. 5 黄崑, 袁心, 李蕾, 等. 情感负荷视角下协作检索中用户消极情绪感知及其影响因素研究[J]. 图书情报知识, 2020(1): 42-52. 6 钱明辉, 徐志轩. 虚拟知识社区信息粘性的测算、成因与演化: 一个研究框架[J]. 情报资料工作, 2020, 41(1): 58-68. 7 董健, 陈彬, 刘亮, 等. 信息吸引力和影响力对级联规模分布的影响[J]. 系统仿真学报, 2018, 30(10): 3624-3631. 8 蔡国永, 毕梦莹, 刘建兴. 基于标记信息级联传播树特征的谣言检测新方法[J]. 计算机工程与科学, 2018, 40(8): 1488-1495. 9 邓卫华, 易明. 基于信息扩散级联理论的网络社区口碑信息树状传播研究[J]. 管理学报, 2017, 14(2): 254-260. 10 Kaneko K. Information cascade with marginal stability in a network of chaotic elements[J]. Physica D: Nonlinear Phenomena, 1994, 77(4): 456-472. 11 Kim J, Kwon O, Lee D H. Social influence of hubs in information cascade processes[J]. Management Decision, 2017, 55(4): 730-744. 12 Zhang G Q, Zhang G Q, Cheng S Q, et al. Symbiotic effect: a guideline for network modeling[J]. EPL (Europhysics Letters), 2009, 87(6): 68002. 13 陈晔, 耿佳, 吴迪, 等. 旅游虚拟社区用户粘性与分享行为的关系: 自我建构的调节作用[J]. 旅游科学, 2018, 32(3): 1-12. 14 鄢慧丽, 余军, 熊浩. 移动旅游应用用户粘性影响因素研究——以网络舆论为调节变量[J]. 南开管理评论, 2020, 23(1): 18-27. 15 赵青, 薛君. 网络用户粘性行为测评研究[J]. 统计与信息论坛, 2014, 29(10): 72-78. 16 党伊玮, 石贵成, 张鸿敏. 沉浸体验与广告耐性: 如何提高内容网站浏览者的粘性?[J]. 现代财经(天津财经大学学报), 2020, 40(4): 82-93. 17 Huang L J, Jia L, Song J H. Antecedents of user stickiness and loyalty and their effects on users’ group-buying repurchase intention[C]// Proceedings of the Twenty First Americas Conference on Information Systems. 2015. 18 Xu F, Qi Y, Li X T. What affects the user stickiness of the mainstream media websites in China?[J]. Electronic Commerce Research and Applications, 2018, 29: 124-132. 19 Rong K, Xiao F, Zhang X Y, et al. Platform strategies and user stickiness in the online video industry[J]. Technological Forecasting and Social Change, 2019, 143: 249-259. 20 Kim S, Baek T H, Kim Y K, et al. Factors affecting stickiness and word of mouth in mobile applications[J]. Journal of Research in Interactive Marketing, 2016, 10(3): 177-192. 21 黄崑, 李京津, 吴英梅. 信息行为研究中的情感负荷理论及应用研究综述[J]. 图书情报工作, 2018, 62(12): 116-124. 22 Nahl D. Affective load and engagement in second life[J]. International Journal of Virtual and Personal Learning Environments, 2010, 1(3): 1-16. 23 ?etin Y, Griffiths C, ?zel Z E Y, et al. Affective overload: the effect of emotive visual stimuli on target vocabulary retrieval[J]. Journal of Psycholinguistic Research, 2016, 45(2): 275-285. 24 Nahl D. Affective and cognitive information behavior: interaction effects in Internet use[J/OL]. Proceedings of the American Society for Information Science and Technology, 2005, 42(1). https://doi.org/10.1002/meet.1450420196. 25 Nahl D. Measuring the affective information environment of web searchers[J]. Proceedings of the American Society for Information Science and Technology, 2004, 41(1): 191-197. 26 孙琛琛, 申德荣, 单菁, 等. WSR: 一种基于维基百科结构信息的语义关联度计算算法[J]. 计算机学报, 2012, 35(11): 2361-2370. 27 Berger D E, Pezdek K, Banks W P. Applications of cognitive psychology: problem solving, education, and computing[M]. New York: Routledge, 1986. 28 闵容, 胡竹菁. 时间压力和相似性对类比推理直觉加工的影响[J]. 心理学探新, 2020, 40(3): 214-220. 29 李岩彪. 基于主题的文本细粒度情感分析与应用[D]. 北京: 北京邮电大学, 2019. 30 薛福亮, 刘丽芳. 一种基于CRF与ATAE-LSTM的细粒度情感分析方法[J]. 数据分析与知识发现, 2020, 4(Z1): 207-213. 31 杨骏. 细粒度文本情感分析问题研究[D]. 南京: 南京大学, 2019. 32 赵青, 张利, 薛君. 网络用户粘性行为形成机理及实证分析[J]. 情报理论与实践, 2012, 35(10): 25-29. 33 Danaher P J, Mullarkey G W, Essegaier S. Factors affecting web site visit duration: a cross-domain analysis[J]. Journal of Marketing Research, 2006, 43(2): 182-194. 34 Kim S S, Malhotra N K. A longitudinal model of continued IS use: an integrative view of four mechanisms underlying postadoption phenomena[J]. Management Science, 2005, 51(5): 741-755. 35 李华君, 陈先红. 中国危机公关案例研究报告[M]. 武汉: 华中科技大学出版社, 2013. 36 陈萍, 彭文成. 强关系与弱关系下企业网络中的知识共享进化博弈分析[J]. 情报理论与实践, 2014, 37(4): 28-31. 37 李吉, 黄微, 郭苏琳, 等. 网络口碑舆情情感强度测度模型研究——基于PAD三维情感模型[J]. 情报学报, 2019, 38(3): 277-285. 38 魏建良, 朱庆华. 基于信息级联的网络意见传播及扭曲效应国外研究进展[J]. 情报学报, 2019, 38(10): 1117-1128. 39 Trope Y, Liberman N. Construal-level theory of psychological distance[J]. Psychological Review, 2010, 117(2): 440-463. 40 Petty R E, Bri?ol P. Emotion and persuasion: cognitive and meta-cognitive processes impact attitudes[J]. Cognition & Emotion, 2015, 29(1): 1-26. |
|
|
|