|
|
Technology Convergence and Evolution Path Detection: Technology Group Similarity Method Based on Time Series Analysis |
Chen Yue1, Wang Kang1, Song Chao1, Zuo Jia1, Pan Yuntao2, Gao Jiping2 |
1.Institution of Science of Science and S&T Management & WISE Lab, Dalian University of Technology, Dalian 116024 2.Institute of Scientific and Technical Information of China, Beijing 100038 |
|
|
Abstract This paper presents the technology group similarity time series analysis method for technology fusion and evolution path detection to analyze technology development paths in the field of additive manufacturing. To this end, first, the study takes additive manufacturing technology patent data as the analysis object and measures the overall change trend of the technical field from the level of patent documentation, technical level, and technical domain level. Second, based on the co-occurrence principle of IPC classification number, the study uses the detection algorithm, identifies technology groups, and correlates the technology groups in adjacent time intervals through cosine similarity. Finally, visualization techniques are used to show the fusion and diffusion evolution relationships between the technology groups in different time intervals. The results of the study show that the additive manufacturing technology is undergoing a stage of rapid development, wherein the technology integration capability and inheritance is gradually enhanced. Additionally, this technical field has become relatively independent. The evolution path of the technology fusion and diffusion is clarified, primarily including additive manufacturing materials and processes, computer-aided design, and the three key paths of additive manufacturing applications. Recently, metal additive manufacturing and arc additive manufacturing have transformed into technical hot spots, and biomedical, construction, and food fields have become key technology application areas. The method presented in this study supplements the traditional IPC co-occurrence method. Furthermore, it shows the technological evolution path from a dynamic perspective, providing a new perspective and technical means for comprehensive detection of technological evolution path.
|
Received: 30 May 2020
|
|
|
|
1 Latour B. Science in action: how to follow scientists and engineers through society[M]. Boston: Harvard Univeristy Press, 1987. 2 Jari K O, Lauraeus T. Analysis of 2017 Gartner's three megatrends to thrive the disruptive business, technology trends 2008-2016, dynamic capabilities of VUCA and foresight leadership tools[J]. Advances in Technology Innovation, 2019, 4(2): 105-115. 3 Verspagen B. Mapping technological trajectories as patent citation networks: a study on the history of fuel cell research[J]. Advances in Complex Systems, 2007, 10(1): 93-115. 4 许冠南, 谢梦娇, 潘美娟, 等. 3D打印产业技术的演变与预测研究——基于专利主路径分析[J]. 北京邮电大学学报(社会科学版), 2016, 18(4): 77-85. 5 刘怀兰, 廖岭, 周源. 基于知识流动视角的工程技术预测——以谐波减速器为例[J]. 中国机械工程, 2016, 27(24): 3317-3325. 6 张丰, 刘啦, 缪小明. 燃料电池研发的热点领域与关键技术: 基于专利数据的实证研究[J]. 情报杂志, 2017, 36(1): 54-58. 7 闫杰, 缪小明, 闫斌. 特斯拉纯电动汽车核心和非核心技术演化研究[J]. 世界科技研究与发展, 2017, 39(3): 291-302. 8 孙冰, 徐晓菲, 苏晓. 技术扩散主路径及核心企业的识别研究——以手机芯片专利引文网络为例[J]. 情报学报, 2019, 38(2): 201-208. 9 韩毅, 金碧辉. 基于连通性的引文网络结构分析新视角: 主路径分析[J]. 科学学研究, 2012, 30(11): 1634-1640. 10 娄岩, 杨嘉林, 黄鲁成, 等. 基于专利共类的技术融合分析框架研究——以老年福祉技术与信息技术的融合为例[J]. 现代情报, 2019, 39(9): 41-53. 11 周磊, 杨威. 基于加权关联规则的技术融合探测[J]. 情报杂志, 2019, 38(1): 67-72, 60. 12 翟东升, 蔡力伟, 张杰, 等. 基于专利的技术融合创新轨道识别模型研究——以云计算技术为例[J]. 情报学报, 2015, 34(4): 352-360. 13 翟东升, 张京先. 基于专利技术共现网络的无人驾驶汽车技术融合演化研究[J]. 情报杂志, 2020, 39(4): 60-66, 19. 14 Suzuki J, Kodama F. Technological diversity of persistent innovators in Japan two case studies of large Japanese firms[J]. Research Policy, 2004, 33(3): 531-549. 15 Palla G, Barabási A L, Vicsek T. Quantifying social group evolution[J]. Nature, 2007, 446(7136): 664-667. 16 吴斌, 王柏, 杨胜琦. 基于事件的社会网络演化分析框架[J]. 软件学报, 2011, 22(7): 1488-1502. 17 钱铁云, 李青, 许承瑜. 面向科技主题发展分段的社区核心圈技术[J]. 计算机科学与探索, 2010, 4(2): 170-179. 18 邓丽荣, 王晓刚, 陆树河, 等. 增材制造原材料发展现状[J]. 科技资讯, 2016, 14(24): 47-50. 19 闵玉勤, 王浩仁, 黄伟, 等. 适应3D打印技术的聚合物材料研究进展[J]. 粘接, 2016, 37(1): 36-41. 20 宋丽莉. 快速原型技术的研究现状及存在的问题[J]. 科技创新导报, 2013, 10(1): 53-54. |
|
|
|