|
|
Research on the Influencing Factors and the Influence of Positive Citation Papers from the Perspective of Citing Papers: Using Natural Language Processing as an Example |
Xu Linhong1,2, Ding Kun1, Sun Xiaoling1, Yang Yang1 |
1.WISE Lab, Institute of Science of Science and Technology Management, Dalian University of Technology, Dalian 116024 2.Software Institute, Dalian University of Foreign Languages, Dalian 116044 |
|
|
Abstract Citation frequency is an important evaluation index for scientific papers, but because of the issue of citation homogeneity, the deviation of citation frequency must be corrected. Based on data regarding citation polarity of natural language processing papers, this paper studies the influence of the differences between positive and neutral citations as well as between differently motivated positive citations. Furthermore, it discusses which factors influence an author's citation polarity. Using a nonparametric test, logistic regression, and other statistical inference methods, the study reveals that the influence of positive citations is significantly higher than that of neutral citations, and among the different reasons for positive citations, the influence of “applied” papers is greater. Furthermore, the position of the citation and the length of the citation sentence have a great influence on the citation polarity, but the citation intensity and the number of references have no influence on this polarity. This study's findings provide useful reform suggestions for further enriching citation analysis theory and refining evaluation strategies for technology quality.
|
Received: 04 March 2020
|
|
|
|
1 Garfield E. Citation indexes for science: a new dimension in documentation through association of ideas[J]. Science, 1955, 122(3159): 108-111. 2 Garfield E. Can citation indexing be automated?[C]// Proceedings of the Symposium on Statistical Association Methods for Mechanized Documentation. Washington, DC: National Bureau of Standards Miscellaneous Publication,1964: 189-192. 3 Cronin B, Meho L. Using the h-index to rank influential information scientists[J]. Journal of the American Society for Information Science and Technology, 2006, 57(9): 1275-1278. 4 王海涛, 谭宗颖, 陈挺. 论文被引频次影响因素研究——兼论被引频次评估科研质量的合理性[J]. 科学学研究, 2016, 34(2): 171-177. 5 Pinski G, Narin F. Citation influence for journal aggregates of scientific publications: theory, with application to the literature of physics[J]. Information Processing & Management, 1976, 12(5): 297-312. 6 马瑞敏, 张慧, 杨雨华. 加权引用视角下的作者学术影响力评价研究[J]. 情报学报, 2017, 36(8): 790-797. 7 谢娟, 龚凯乐, 成颖, 等. 论文下载量与被引量相关关系的元分析[J]. 情报学报, 2017, 36(12): 1255-1269. 8 李冲, 张丽. “洛瑞悖论”与引文分析评价学术的可靠性[J]. 科学学研究, 2014, 32(2): 184-188. 9 Wan X J, Liu F. Are all literature citations equally important? Automatic citation strength estimation and its applications[J]. Journal of the Association for Information Science and Technology, 2014, 65(9): 1929-1938. 10 索传军, 盖双双. 单篇学术论文的评价本质、问题及新视角分析[J]. 情报杂志, 2018, 37(6): 102-107. 11 Hernández-Alvarez M, Gómez J M. Citation impact categorization: for scientific literature[C]// Proceedings of the 2015 IEEE 18th International Conference on Computational Science and Engineering. IEEE, 2015: 307-313. 12 Catalini C, Lacetera N, Oettl A. The incidence and role of negative citations in science[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(45): 13823-13826. 13 刘盛博, 丁堃, 张春博. 基于引用内容性质的引文评价研究[J]. 情报理论与实践, 2015, 38(3): 77-81. 14 Chubin D E, Moitra S D. Content analysis of references: adjunct or alternative to citation counting?[J]. Social Studies of Science, 1975, 5(4): 423-441. 15 Veer Martens B V D, Goodrum A A. The diffusion of theories: a functional approach[J]. Journal of the American Society for Information Science and Technology, 2006, 57(3): 330-341. 16 陆伟, 孟睿, 刘兴帮. 面向引用关系的引文内容标注框架研究[J]. 中国图书馆学报, 2014, 40(6): 93-104. 17 Moravcsik M J. Citation context classification of a citation classic concerning citation context classification[J]. Social Studies of Science, 1988, 18(3): 515-521. 18 尹莉. “极性”概念在引文分析中应用的一个实证研究[J]. 情报杂志, 2017, 36(8): 124-130,143. 19 尹莉, 郭璐, 李旭芬. 基于引用功能和引用极性的一个引用分类模型研究[J]. 情报杂志, 2018, 37(7): 139-145. 20 尹莉, 邓红梅. 自引的新评价——引用极性、引用位置和引用密度的视角[J]. 情报杂志, 2019, 38(9): 180-184, 179. 21 耿树青, 杨建林. 基于引用情感的论文学术影响力评价方法研究[J]. 情报理论与实践, 2018, 41(12): 93-98. 22 章成志, 李卓, 赵梦圆, 等. 基于引文内容的中文图书被引行为研究[J]. 中国图书馆学报, 2019, 45(3): 96-109. 23 胡志刚. 全文引文分析方法与应用[D]. 大连: 大连理工大学, 2014. 24 Vieira E S, Gomes J A N F. Citations to scientific articles: its distribution and dependence on the article features[J]. Journal of Informetrics, 2010, 4(1): 1-13. 25 Bornmann L, Daniel H D. Selecting scientific excellence through committee peer review - a citation analysis of publications previously published to approval or rejection of post-doctoral research fellowship applicants[J]. Scientometrics, 2006, 68(3): 427-440. 26 徐琳宏, 丁堃, 陈娜, 等. 中文文献引文情感语料库构建[J]. 情报学报, 2020, 39(1): 25-37. 27 李卓, 赵梦圆, 柳嘉昊, 等. 基于引文内容的图书被引动机研究[J]. 图书与情报, 2019(3): 96-104. |
|
|
|