|
|
Research on the Characteristics of the Participants of Information Dissemination during the COVID-19 Pandemic —A Case Study of “Diamond Princess” |
Wang Xiwei1,2,3,4, Jia Ruonan1, Liu Tingyan1, Zhang Liu1 |
1.School of Management, Jilin University, Changchun 130022 2.Research Center for Big Data Management, Jilin University, Changchun 130022 3.Research Center of Cyberspace Governance, Jilin University, Changchun 130022 4.Academy of Northeast Revitalization, Jilin University, Changchun 130022 |
|
|
Abstract COVID-19 has been designated by the World Health Organization (WHO) as a public health emergency of international concern (PHEIC). It has received widespread global attention, triggering the dissemination of a large amount of information on global social media platforms. The analysis of the characteristics of the main body of information dissemination in public health emergencies is an important issue. As such, the government supervision and guidance departments consider this issue in the Internet public opinion guidance and network ecological governance of the pandemic. We conducted the characteristic analysis method and the analysis model of the participants during the COVID-19 pandemic, and combined the results with the typical topic of “Diamond Princess” during the global pandemic on the Sina Weibo platform. In doing so, we performed an analysis of the participation time, influence, and features of the content of the participants. The results showed that there are obvious differences in the participation time of different subjects; the overall influence of online official media is the strongest, and the influence of the subjects changes dynamically with time. Further, the content of online official media and self-media is clear, and the content types that ordinary netizens consider are numerous and varied.
|
Received: 30 April 2020
|
|
|
|
1 世界卫生组织(WHO). 关于2019新型冠状病毒疫情的《国际卫生条例(2005)》突发事件委员会第二次会议的声明[EB/OL]. [2020-02-25]. http://cn.un.org.cn/info/7/974.html. 2 世界卫生组织(WHO). 世卫组织总干事2020年3月27日在2019冠状病毒病(COVID-19)疫情媒体通报会上的讲话[EB/OL]. (2020-03-27). https://www.who.int/zh/dg/speeches/detail/who- director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---27-march-2020. 3 艾媒报告. 2019年中国移动社交行业研究报告[EB/OL]. (2019-03-01) [2020-02-25]. https://www.iimedia.cn/c400/63737.html. 4 Meadows C Z, Tang L, Liu W L. Twitter message types, health beliefs, and vaccine attitudes during the 2015 measles outbreak in California[J]. American Journal of Infection Control, 2019, 47(11): 1314-1318. 5 Abdullah N A, Nishioka D, Tanaka Y, et al. Why I retweet? Exploring user’s perspective on decision-making of information spreading during disasters[C]// Proceedings of the 50th Hawaii International Conference on System Sciences, 2017: 432-441. 6 An L, Yu C M, Lin X, et al. Topical evolution patterns and temporal trends of microblogs on public health emergencies[J]. Online Information Review, 2018, 42(6): 821-846. 7 Li X. Media exposure, perceived efficacy, and protective behaviors in a public health emergency[J]. International Journal of Communication, 2018, 12: 20. 8 王林, 王可, 吴江. 社交媒体中突发公共卫生事件舆情传播与演变——以2018年疫苗事件为例[J]. 数据分析与知识发现, 2019, 3(4): 42-52. 9 姚乐野, 胡康林. 2000—2016年国外突发事件的应急信息管理研究进展[J]. 图书情报工作, 2016, 60(23): 6-15. 10 梁艳平, 安璐, 刘静. 同类突发公共卫生事件微博话题共振研究[J]. 数据分析与知识发现, 2020, 4(2/3): 122-133. 11 安璐, 梁艳平. 突发公共卫生事件微博话题与用户行为选择研究[J]. 数据分析与知识发现, 2019, 3(4): 33-41. 12 安璐, 欧孟花. 突发公共卫生事件利益相关者的社会网络情感图谱研究[J]. 图书情报工作, 2017, 61(20): 120-130. 13 郑昱. 突发公共事件中舆论信息传播倾向的影响因素——基于民众负性情绪的研究视角[J]. 情报理论与实践, 2017, 40(7): 80-87. 14 安璐, 杜廷尧, 李纲, 等. 突发公共卫生事件利益相关者在社交媒体中的关注点及演化模式[J]. 情报学报, 2018, 37(4): 394-405. 15 Xie Y G, Qiao R, Shao G S, et al. Research on Chinese social media users’ communication behaviors during public emergency events[J]. Telematics and Informatics, 2017, 34(3): 740-754. 16 Xu W W, Saxton G D. Does stakeholder engagement pay off on social media? A social capital perspective[J]. Nonprofit and Voluntary Sector Quarterly, 2019, 48(1): 28-49. 17 Liu T Y, Zhong Y, Chen K. Interdisciplinary study on popularity prediction of social classified hot online events in China[J]. Telematics and Informatics, 2017, 34(3): 755-764. 18 Li S Y, Liu Z X, Li Y L, et al. Temporal and spatial evolution of online public sentiment on emergencies[J]. Information Processing & Management, 2020, 57(2): 102177. 19 李艺全, 张燕刚. 高校网络舆情共振现象仿真及应对策略研究[J]. 情报杂志, 2019, 38(12): 107-113. 20 王东波, 叶文豪, 吴毅, 等. 基于多特征时间抽取模型的食品安全事件演化序列生成研究[J]. 情报学报, 2017, 36(9): 930-939. 21 Jiang X J, Hu Q, Wang S S, et al. Application of ALOHA in emergency response for hazardous chemicals accidents[J]. Applied Mechanics and Materials, 2014, 631/632: 1080-1085. 22 Amato F, Moscato V, Picariello A, et al. Extreme events management using multimedia social networks[J]. Future Generation Computer Systems, 2019, 94: 444-452. 23 陈思菁, 李纲, 毛进, 等. 突发事件信息传播网络中的关键节点动态识别研究[J]. 情报学报, 2019, 38(2): 178-190. 24 郭博, 许昊迪, 雷水旺. 知乎平台用户影响力分析与关键意见领袖挖掘[J]. 图书情报工作, 2018, 62(20): 122-132. 25 王顶, 徐军, 段存玉, 等. 基于PageRank的用户影响力评价改进算法[J]. 哈尔滨工业大学学报, 2018, 50(5): 60-67. 26 罗芳, 徐阳, 蒲秋梅, 等. 基于PageRank的多维度微博用户影响力度量[J]. 计算机应用研究, 2020, 37(5): 1354-1358, 1367. 27 童曼琪, 黄江升, 郭昆. 融合Spark和隐性兴趣的用户综合影响力度量[J]. 计算机工程, 2020, 46(11): 61-69. 28 王新胜, 马树章. 融合用户自身因素与互动行为的微博用户影响力计算方法[J]. 计算机科学, 2020, 47(1): 96-101. 29 Zhang S X, Liu W J, Deng X L, et al. Micro-blog topic recommendation based on knowledge flow and user selection[J]. Journal of Computational Science, 2018, 26: 512-521. 30 张仰森, 郑佳, 唐安杰. 基于多特征融合的微博用户权威度定量评价方法[J]. 电子学报, 2017, 45(11): 2800-2809. 31 Celardo L, Everett M G. Network text analysis: a two-way classification approach[J]. International Journal of Information Management, 2020, 51: 102009. 32 Bullinaria J A, Levy J P. Extracting semantic representations from word co-occurrence statistics: stop-lists, stemming, and SVD[J]. Behavior Research Methods, 2012, 44(3): 890-907. 33 Kido G S, Igawa R A, Barbon Jr S. Topic modeling based on Louvain method in online social networks[C]//Proceedings of the 12th Brazilian Symposium on Information Systems. Porto Alegre: Sociedade Brasileira de Computa??o, 2016: 353-360. 34 每日经济新闻. “生死时速”: 日本“钻石公主号”邮轮隔离记[EB/OL]. (2020-02-09) [2020-02-27]. https://view.inews.qq.com/w2/20200209A0CMWW00?tbkt=F&strategy=&openid=o04IBAIBR ZsEx0nh8DTfqAOM5hfM&uid=&refer=wx_hot. 35 知微. 日本“钻石公主号”邮轮出现新冠肺炎聚集性感染[EB/OL]. (2020-02-04) [2020-02-27]. https://ef.zhiweidata.com/event/4195a932e2cd268c10028146/profileV2. 36 高晓红, 李兴奇. 主成分分析中线性无量纲化方法的比较研究[J]. 统计与决策, 2020, 36(3): 33-36. 37 新浪微博数据中心. 2018微博用户发展报告[EB/OL]. (2019-03-15) [2020-02-27]. https://data.weibo.com/report/reportDetail?id=433. 38 镝数图表[OL]. https://dycharts.com/appv2/#/pages/home/index. 39 李丽华, 韩思宁. 暴恐事件网络舆情传播机制及预防研究——英国典型案例的实证分析[J]. 情报杂志, 2019, 38(11): 102-111, 54. 40 刘建准, 石密, 刘春雷. 网民群体对突发互联网集体事件信息感知的语义图谱研究[J]. 情报理论与实践, 2019, 42(2): 158-163. 41 Dennis A R, Fuller R M, Valacich J S. Media, tasks, and communication processes: a theory of media synchronicity[J]. MIS Quarterly, 2008, 32(3): 575-600. 42 刘玉文, 王凯, 刘月华. 基于影响力遗传的意见领袖在线识别[J]. 情报理论与实践, 2019, 42(7): 126-131, 164. 43 石家宜, 郭继荣. “中美贸易战”涉华舆情、层级成因及对策研究: 基于Youtube平台的考察[J]. 情报杂志, 2019, 38(8): 105-112, 135. |
|
|
|