|
|
Research on Intelligent Services for Industrial Competitive Intelligence Driven by Multi-Source Data |
Zheng Rong1,2, Yang Jingxiong1, Zhang Wei1, Chang Zeyu1 |
1.School of Management, Jilin University, Changchun 130022 2.Information Resource Research Center, Jilin University, Changchun 130022 |
|
|
Abstract The competitive intelligence service industry will evolve and become more intelligent with time. As the basis of competitive intelligence, the use of multi-source data significantly impacts the realization of intelligent services for industrial competitive intelligence. This paper explores this issue in order to provide additional references for research on industrial competitive intelligence services. First, this paper analyzes the connotations and demand of smart services for multi-source data-driven industry competitive intelligence. Second, it clarifies the realization path of multi-source data-driven smart services for industrial competitive intelligence. According to the implementation plan, after the establishment of a multi-source data fusion framework comprising bottom-level fusion and middle-level and high-level integration, this paper expounds the role of industrial competitive intelligence services in different dimensions, focusing on four service modes—intelligent retrieval, personalized recommendation, special customization, and intelligent prediction. Multi-source data and its fusion is an important driving force for the intelligent transformation of industrial competitive intelligence services. A multi-source data-driven intelligent service for industrial competitive intelligence should use the demand for industrial intelligence as a reference point, take the multi-source data and its integration as the breakthrough point, and promote the realization of a multi-dimensional intelligent service for industrial competitive intelligence.
|
Received: 11 June 2020
|
|
|
|
1 张立超, 房俊民, 高士雷. 产业竞争情报的内涵、意义及范畴界定[J]. 情报杂志, 2010, 29(6): 152-156. 2 陈茫, 张庆普, 陈静. 智慧服务情境下图情服务人员学习敏锐度的实证研究[J]. 图书情报工作, 2018, 62(14): 81-90. 3 罗立群, 李广建. 智慧情报服务与知识融合[J]. 情报资料工作, 2019, 40(2): 87-94. 4 李丽梅, 吴新年. 产业竞争情报服务模式演化分析[J]. 图书情报工作, 2016, 60(23): 37-45. 5 化柏林, 李广建. 大数据环境下的多源融合型竞争情报研究[J]. 情报理论与实践, 2015, 38(4): 1-5. 6 化柏林, 李广建. 大数据环境下多源信息融合的理论与应用探讨[J]. 图书情报工作, 2015, 59(16): 5-10. 7 宋新平, 吴晓伟, 刘竞. 基于信息融合和综合集成研讨厅混合的企业竞争情报系统[J]. 图书情报工作, 2009, 53(22): 76-79. 8 廖开际, 张艺. 基于信息融合的企业竞争情报系统构建[J]. 情报杂志, 2012, 31(10): 1-5. 9 郑彦宁, 刘志辉, 赵筱媛, 等. 基于多源信息与多元方法的产业竞争情报分析范式[J]. 情报学报, 2013, 32(3): 228-234. 10 陈果, 朱茜凌, 肖璐. 任务分解视角下企业产品多源融合型竞争情报研究[J]. 图书情报工作, 2017, 61(22): 127-133. 11 Lutz C J, Bodendorf F. Analyzing industry stakeholders using open-source competitive intelligence-a case study in the automotive supply industry[J]. Journal of Enterprise Information Management, 2020, 33(3): 579-599. 12 刘如, 吴晨生, 刘彦君. “互联网+”环境下竞争情报的服务模式转变[J]. 情报理论与实践, 2016, 39(3): 32-35, 41. 13 唐晓波, 郑杜, 翟夏普. 基于大数据智能的竞争情报系统模型研究[J]. 情报理论与实践, 2018, 41(11): 133-137, 160. 14 唐晓波, 郑杜, 谭明亮. 融合情报方法论与人工智能技术的企业竞争情报系统模型构建[J]. 情报科学, 2019, 37(7): 118-124, 162. 15 石进, 张天娇. 基于工业互联网的竞争情报系统研究[J]. 现代情报, 2020, 40(2): 18-25. 16 王心妍, 王晓慧. 产业竞争情报智慧服务体系研究[J]. 竞争情报, 2019, 15(3): 12-17. 17 Donohue D P, Murphy P M. Supporting competitive intelligence at DuPont by controlling information overload and cutting through the noise[J]. Journal of Information & Knowledge Management, 2016, 15(1): 1650004. 18 化柏林. 多源信息融合方法研究[J]. 情报理论与实践, 2013, 36(11): 16-19. 19 赵筱媛, 李鹏. 产业竞争情报需求调查与分析[J]. 情报杂志, 2015, 34(4): 27-31, 18. 20 龚花萍, 刘嘉良, 余建兵. 面向区域科技创新的竞争情报联动供给服务模式研究[J]. 情报杂志, 2020, 39(5): 64-70, 88. 21 李振, 周东岱. 教育知识图谱的概念模型与构建方法研究[J]. 电化教育研究, 2019, 40(8): 78-86, 113. 22 韩普, 马健, 张嘉明, 等. 基于多数据源融合的医疗知识图谱框架构建研究[J]. 现代情报, 2019, 39(6): 81-90. |
|
|
|