|
|
Systems Intelligence and Organizational Intelligence: From Scenario-Based to Model-Based Intelligence |
Zhao Zhiyun1, Sun Xingkai2,3, Wang Xiao2,4, Gao Fang1, Wang Feiyue2,3,4 |
1.Institute of Scientific and Technical Information of China, Beijing 100038 2.The State Key Laboratory for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190 3.University of Chinese Academy of Sciences, Beijing 100049 4.Qingdao Academy of Intelligent Industries, Qingdao 266500 |
|
|
Abstract The Communist Party of China has unveiled in full the Party leadership’s proposals for formulating the 14th Five-Year Plan (2021-2025) for National Economic and Social Development and the Long-Range Objectives through the year 2035. The document highlights China’s new development stage, philosophy, and pattern. It insists on emphasizing the core position of innovation in the overall situation of China’s modernization drive, and on scientific and technological self-reliance as strategic support for national development. At the same time, it puts forward the system concept among the five principles for the first time. In the context of “innovative development, intelligence first”, we must reposition intelligence theory and methods in accordance with the new development concept in a new historical position. Considering the need for the development of information theory and practice under the guidance of the spirit of the Fifth Plenary Session of the 19th Central Committee, this paper puts forward the concepts and theories of organizational intelligence and systems intelligence, and explores the information service methods that adapt to the new development stage. Intelligence is the integration of Knowledge, Action, and Organization (KAO). Artificial intelligence provides more effective means for realizing the original intention of the KAO integration. However, the actual implementation of the KAO integration must rely on new concepts and methods of systems engineering, especially model-based systems engineering methods, using model-based intelligence, from organizational intelligence to systems intelligence, and from organizational smartness to system smartness, to build smart intelligence systems engineering. Focusing on this concept, raising corresponding questions and addressing key concerns of the Fifth Plenary Session are the essence of this article.
|
Received: 20 November 2020
|
|
|
|
1 赵志耘. 构建我国科学决策机制面临的形势及关键措施[J]. 中国科学院院刊, 2008, 23(3): 195-200. 2 王飞跃. 知识产生方式和科技决策支撑的重大变革——面向大数据和开源信息的科技态势解析与决策服务[J]. 中国科学院院刊, 2012, 27(5): 527-537. 3 王飞跃. 从激光到激活: 钱学森的情报理念与平行情报体系[J]. 自动化学报, 2015, 41(6): 1053-1061. 4 王飞跃. 情报5.0: 平行时代的平行情报体系[J]. 情报学报, 2015, 34(6): 563-574. 5 赵志耘, 张兆锋, 姚长青, 等. 面向科技创新的决策剧场研究[J]. 中国软科学, 2018(10): 136-141. 6 赵志耘, 王飞跃. 平行情报与决策剧场: 从基于模型的情报到智能情报系统工程[R]. 工作报告, 2019. 7 Harold W. Organizational intelligence[M]. NewYork: Basic Books, 1967. 8 McMaster M D. The intelligence advantage: Organizing for complexity[M]. Boston: Butterworth-Heinemann, 1996. 9 Akgün A E, Byrne J, Keskin H. Organizational intelligence: A structuration view[J]. Journal of Organizational Change Management, 2007, 20(3): 272-289. 10 Matsuda T. Organizational intelligence: Coordination of human intelligence and machine intelligence[M]// Economics and Cognitive Science. Amsterdam: Elsevier, 1992: 171-180. 11 王飞跃. 天命唯新: 迈向知识自动化——《自动化学报》创刊50周年专刊序[J]. 自动化学报, 2013, 39(11): 1741-1743. 12 李国秋, 吕斌. 论组织情报[J]. 图书馆杂志, 2010, 29(11): 2-8. 13 曹文振, 赖纪瑶, 王延飞. 人工智能时代情报学发展走向之 辨——对本体论、感知论、方法论、服务论的再思考[J]. 情报学报, 2020, 39(5): 557-564. 14 王飞跃. 软件定义的系统与知识自动化:从牛顿到默顿的平行升华[J]. 自动化学报, 2015, 41(1): 1-8. 15 胡康林. 中国情报学界的情景应对研究进展分析[J]. 图书情报工作, 2020, 64(12): 11-18. 16 宗蓓华. 战略预测中的情景分析法[J]. 预测, 1994, 13(2): 50-51. 17 司马珂, 阮文华, 仇理宽. 基于模型的理念: 认知提升与研发模式转型[J]. 科技导报, 2019, 37(7): 30-35. 18 徐敏, 李广建. 情报分析模型综述[J]. 情报理论与实践, 2018, 41(2): 14-21. 19 党蓓, 赵蕴华, 赵志耘, 等. 基于专利的官产学合作关系测度研究——以中韩石墨烯领域为例[J]. 情报杂志, 2014, 33(5): 66-70. 20 Gao F, Jia X F, Zhao Z Y, et al. Bibliometric analysis on tendency and topics of artificial intelligence over last decade[J/OL]. Microsystem Technologies, 2019 (2019-04-11). https://doi.org/10.1007/s00542-019-04426-y. 21 胡昌平. 情报用户研究[M]. 武汉: 湖北科学技术出版社, 1987. 22 曾忠禄. 基于经济学理论的竞争情报需求模型[J]. 情报理论与实践, 2012, 35(10): 6-9. 23 王娟娟, 陈峰. 基于生产理论的产业竞争情报需求模型研究[J]. 情报杂志, 2013, 32(1): 15-20, 26. 24 邢宪光, 刘敏榕. 基于系统动力学的产业竞争情报供需模型研究[J]. 图书情报工作, 2012, 56(16): 91-96, 147. 25 吴金红, 张玉峰, 王翠波. 基于本体的竞争情报采集模型研究[J]. 情报理论与实践, 2007, 30(5): 577-580, 583. 26 王翠波. 基于文本情感挖掘的企业技术竞争情报采集模型研究[J]. 图书情报工作, 2010, 54(14): 75-78. 27 王玻, 彭伟. 基于数据挖掘的服务企业诊断信息情报智能采集模型研究[J]. 科技管理研究, 2020, 40(1): 184-192. 28 王飞跃. 社会信号处理与分析的基本框架:从社会传感网络到计算辩证解析方法[J]. 中国科学: 信息科学, 2013, 43(12): 1598-1611. 29 Wang F Y, Lai G, Tang S. An application specific knowledge engine for researches in intelligent transportation systems[C]// Proceedings of the 7th International IEEE Intelligent Transportation Systems. IEEE, 2004: 841-846. 30 包昌火, 谢新洲. 关于我国情报学研究中若干问题的思考——写于《信息分析丛书》前言[J]. 情报理论与实践, 2006, 29(5): 513-515. 31 Singhal A. Introducing the knowledge graph: Things, not strings[EB/OL]. [2013-04-10]. http://googleblog.blogspot.co.uk/2012/05/introducing-knowledge-graph-things-not.html. 32 周京艳, 刘如, 李佳娱, 等. 情报事理图谱的概念界定与价值分析[J]. 情报杂志, 2018, 37(5): 31-36, 42. 33 赵志耘, 张均胜, 姚长青, 等. 面向管理与决策的中国科技创新图谱研究[J]. 情报学报, 2018, 37(8): 774-781. 34 邵黎明, 赵志耘, 许端阳. 基于专利文献和知识图谱的技术预测方法研究[J]. 科技管理研究, 2015, 35(14): 134-140. 35 李辉, 张惠娜, 侯元元, 等. 情报3.0时代科技情报服务能力研究——基于工程技术视角的服务能力四层结构模型[J]. 情报理论与实践, 2017, 40(3): 1-4. 36 Marchionini G. Exploratory search: From finding to understanding[J]. Communications of the ACM, 2006, 49(4): 41-46. 37 Parsa S, Entezari-Maleki R. RASA: A new grid task scheduling algorithm[J]. International Journal of Digital Content Technology and Its Applications, 2009, 3(4): 91-99. 38 Burtsev M, Seliverstov A, Airapetyan R, et al. DeepPavlov: Open-source library for dialogue systems[C]// Proceedings of ACL 2018, System Demonstrations. Stroudsburg: Association for Computational Linguistics, 2018: 122-127. 39 王飞跃. X5.0: 平行时代的平行智能体系[J]. 中国计算机学会通讯, 2015, 11(5): 10-14. 40 王飞跃, 张俊, 王晓. 知识计算和知识自动化: 新轴心时代的核心需求[J]. 张江科技评论, 2017(4): 25-27. |
|
|
|