|
|
User Profile Tag Generation and Information Recommendations for Science and Tencnology Intelligence |
Zhao Hui, Hua Bolin, He Hongwei |
Department of Information Management, Peking University, Beijing 100871 |
|
|
Abstract Science and technology management departments are important users of science and technology intelligence. Actively understanding the intelligence needs of science and technology management departments has become a vital aspect of providing accurate intelligence services in the era of big data. The user portrait approach enables and simplifies this process. Through multi-source data collection and analysis, intelligence users are tagged with labels to describe their characteristics and needs, and recommendations are generated accordingly. This paper uses five methods related to natural language processing to generate labels and extract keywords from text: direct extraction, word pair matching, subject word extraction, generation scheme based on TF-IDF, and combinatorial word processing. After generating labels, a word forest table is used to analyze their association and similarity. Collaborative filtering, common sense, tag association, and other recommendation algorithms are then employed to recommend labels for different users, and preliminary user portraits are constructed. This study’s empirical research and findings show that this set of methods can effectively outline the information needs and characteristics of science and technology management departments. Furthermore, the recommended content is illuminating for science and technology intelligence work.
|
Received: 06 February 2020
|
|
|
|
1 王晋, 李辉, 尹明理, 等. 科技情报工作的目标定位、核心与时代工作重点[J]. 情报理论与实践, 2018, 41(4): 13-15, 12. 2 Teixeira C, Pinto J S, Martins J A. User profiles in organizational environments[J]. Campus-Wide Information Systems, 2008, 25(3): 128-144. 3 高扬, 池雪花, 章成志, 等. 杰出人才精准画像构建研究——以智能制造领域为例[J]. 图书馆论坛, 2019, 39(6): 90-97. 4 刘海鸥, 孙晶晶, 苏妍嫄, 等. 基于用户画像的旅游情境化推荐服务研究[J]. 情报理论与实践, 2018, 41(10): 87-92. 5 单晓红, 张晓月, 刘晓燕. 基于在线评论的用户画像研究——以携程酒店为例[J]. 情报理论与实践, 2018, 41(4): 99-104, 149. 6 化柏林. 科技信息大数据在情报研究服务中的应用[J]. 图书情报工作, 2017, 61(16): 150-156. 7 许鹏程, 毕强, 张晗, 等. 数据驱动下数字图书馆用户画像模型构建[J]. 图书情报工作, 2019, 63(3): 30-37. 8 熊回香, 杨雪萍. 社会化标注系统中的个性化信息推荐研究[J]. 情报学报, 2016, 35(5): 549-560. 9 李兴华, 陈冬林, 杨爱民, 等. 基于用户兴趣-标签的混合推荐方法研究[J]. 情报学报, 2015, 34(5): 466-470. 10 吴小兰, 章成志. 结合用户关系网和标签共现网的微博用户标签推荐研究[J]. 情报学报, 2015, 34(5): 459-465. 11 贾君枝, 孙智超, 邰杨芳. 基于受控词表的医学资源社会化标签推荐研究[J]. 情报学报, 2013, 32(12): 1326-1332. 12 胡潜, 林鑫. 社会化标注系统中基于标签和项目的兴趣建模比较研究[J]. 情报学报, 2015, 34(12): 1296-1303. 13 Henczel S. Creating user profiles to improve information quality[J]. Online, 2004, 28(3): 30-33. 14 Bishop J, Lewis P R. BLAISE-LINE and the British National Bibliography: Profiles of users and uses[J]. Journal of Librarianship and Information Science, 1985, 17(2): 119-136. 15 Rumpler B. A study of the impact of the user profile in documentary systems[J]. Online Information Review, 2001, 25(6): 359-365. 16 储节旺, 是沁. 省级科技情报机构服务于创新驱动发展的策略研究[J]. 情报理论与实践, 2017, 40(7): 1-5. 17 杨彬, 韩庆文, 雷敏, 等. 基于改进的TF-IDF权重的短文本分类算法[J]. 重庆理工大学学报(自然科学), 2016, 30(12): 108-113. 18 路永和, 李焰锋. 改进TF-IDF算法的文本特征项权值计算方法[J]. 图书情报工作, 2013, 57(3): 90-95. 19 朱新华, 马润聪, 孙柳, 等. 基于知网与词林的词语语义相似度计算[J]. 中文信息学报, 2016, 30(4): 29-36. 20 Konstan J A, Miller B N, Maltz D, et al. GroupLens: Applying collaborative filtering to Usenet news[J]. Communications of the ACM, 1997, 40(3): 77-87. |
|
|
|