|
|
The Prospect of the Construction of a Knowledge Graph of Internet Public Opinion from a Multidisciplinary Perspective |
Wang Lancheng |
Department of Military Information and Network Public Opinion, School of Political, National Defense University, Shanghai 200433 |
|
|
Abstract In order to gauge public opinion as it is expressed on the Internet, from a multidisciplinary perspective, we need to offer an outlet for collaborative research across many disciplines. To this end, we propose creating an event knowledge graph that could be used to describe the sequential and causal relationships between events. Such a tool would help us determine the evolution of events and predict future events. With the constructed public opinion graph, information scientists could significantly improve the objectivity of public opinion research and judgment, management scientists could integrate tools and value rationality to scientifically guide public opinion research, communication scientists could analyze the evolution of public opinion, and intelligent information scientists could improve the interpretive abilities of artificial intelligence systems in event tracking. This project is of great theoretical value and practical significance in helping to carry out cooperative, multidisciplinary public opinion research.
|
Received: 21 March 2020
|
|
|
|
1 Mai G C, Yan B, Janowicz K, et al. Relaxing unanswerable geographic questions using a spatially explicit knowledge graph embedding model[C]// Proceedings of the 22nd AGILE Conference on Geographic Information Science. Cham: Springer, 2020: 21-39. 2 Kim H. Building a K-Pop knowledge graph using an entertainment ontology[J]. Knowledge Management Research & Practice, 2017, 15(2): 305-315. 3 Chi Y, Qin Y, Song R, et al. Knowledge graph in smart education: A case study of entrepreneurship scientific publication management[J]. Sustainability, 2018, 10(4): 995. 4 常亮, 张伟涛, 古天龙, 等. 知识图谱的推荐系统综述[J]. 智能系统学报, 2019, 14(2): 207-216. 5 张洋, 谢卓力. 基于多源网络学术信息聚合的知识图谱构建研究[J]. 图书情报工作, 2014, 58(22): 84-94. 6 Zhao Y Y, Qin B, Liu T, et al. Social sentiment sensor: A visualization system for topic detection and topic sentiment analysis on microblog[J]. Multimedia Tools and Applications, 2016, 75(15): 8843-8860. 7 Kim Y, Dwivedi R, Zhang J, et al. Competitive intelligence in social media Twitter: iPhone 6 vs. Galaxy S5[J]. Online Information Review, 2016, 40(1): 42-61. 8 Abedin B, Babar A. Institutional vs. non-institutional use of social media during emergency response: A case of Twitter in 2014 Australian bush fire[J]. Information Systems Frontiers, 2018, 20(4): 729-740. 9 李磊, 刘继. 面向舆情主题的微博用户行为聚类实证分析[J]. 情报杂志, 2014, 33(3): 118-121. 10 朱毅华, 张超群. 基于影响模型的网络舆情演化与传播仿真研究[J]. 情报杂志, 2015, 34(2): 28-36. 11 廖海涵, 靳嘉林, 王曰芬. 网络舆情事件中微博用户行为特征和关系分析——以新浪微博“雾霾调查: 穹顶之下”为例[J]. 情报资料工作, 2016(3): 12-18. 12 郭淼, 焦垣生. 网络舆情传播与演变背景下的微博信息转发预测分析[J]. 情报杂志, 2016, 35(5): 46-51, 37. 13 Choi S. The two-step flow of communication in Twitter-based public forums[J]. Social Science Computer Review, 2015, 33(6): 696-711. 14 Kim Y, Jeong S R. Opinion-mining methodology for social media analytics[J]. KSII Transactions on Internet and Information Systems, 2015, 9(1): 391-406. 15 Overbey L A, Batson S C, Lyle J, et al. Linking Twitter sentiment and event data to monitor public opinion of geopolitical developments and trends[C]// Proceedings of the 10th International Conference on Social Computing, Behavioral-Cultural Modeling and Prediction and Behavior Representation in Modeling and Simulation. Cham: Springer, 2017: 223-229. 16 陈璟浩, 李纲. 突发社会安全事件网络舆情演化的生存分 析——基于70起重大社会安全事件的分析[J]. 情报杂志, 2016, 35(4): 70-74. 17 马哲坤, 涂艳. 基于知识图谱的网络舆情突发话题内容监测研究[J]. 情报科学, 2019, 37(2): 33-39. 18 王晰巍, 韦雅楠, 邢云菲, 等. 社交网络舆情知识图谱发展动态及趋势研究[J]. 情报学报, 2019, 38(12): 1329-1338. 19 王兰成. 知识集成方法与技术[M]. 北京: 国防工业出版社, 2010. 20 焦晓静, 王兰成. 知识图谱的概念辨析与学科定位研究[J]. 图书情报工作, 2015, 59(15): 5-11. 21 娄国哲, 王兰成. 基于知识图谱的网络舆情知识组织方法研究[J]. 情报理论与实践, 2019, 42(1): 58-64. 22 Rospocher M, van Erp M, Vossen P, et al. Building event-centric knowledge graphs from news[J]. Journal of Web Semantics, 2016, 37-38: 132-151. 23 Gottschalk S, Demidova E. EventKG: A multilingual event-centric temporal knowledge graph[C]// Proceedings of the European Semantic Web Conference. Cham: Springer, 2018: 272-287. 24 Hernes M, Bytniewski A. Knowledge representation of cognitive agents processing the economy events[C]// Proceedings of the Asian Conference on Intelligent Information and Database Systems. Cham: Springer, 2018: 392-401. 25 彭立发. 网络社区事件知识图谱构建[D]. 武汉: 华中科技大学, 2019. 26 Li Z Y, Ding X, Liu T. Constructing narrative event evolutionary graph for script event prediction[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence, California: International Joint Conferences on Artificial Intelligence Organization, 2018: 4201-4207. 27 周京艳, 刘如, 李佳娱, 等. 情报事理图谱的概念界定与价值分析[J]. 情报杂志, 2018, 37(5): 31-36, 42. 28 单晓红, 庞世红, 刘晓燕, 等. 基于事理图谱的网络舆情演化路径分析——以医疗舆情为例[J]. 情报理论与实践, 2019, 42(9): 99-103, 85. 29 祝寒. 基于事理图谱的航空安全事故因果关系研究[D]. 天津: 中国民航大学, 2019. 30 Zhou P, Shi W, Tian J, et al. Attention-based bidirectional long short-term memory networks for relation classification[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2016: 207-212. 31 单晓红, 庞世红, 刘晓燕, 等. 基于事理图谱的政策影响分析方法及实证研究[J]. 复杂系统与复杂性科学, 2019, 16(1): 74-82. 32 王兰成, 陈立富. 国内外网络舆情演化、预警和应对理论研究综述[J]. 图书馆杂志, 2018, 37(12): 4-13. 33 蒋瑛. 风险治理视域的突发事件舆情风险生成分析[J]. 新媒体研究, 2018, 4(16): 1-5. 34 胡栓, 刘胜男. 新时代媒体社会责任与评价体系——基于多重视角的分析与探寻[J]. 新闻界, 2018(7): 97-100. 35 张思龙, 王兰成, 娄国哲. 基于情报感知的网络舆情研判与预警系统研究[J/OL]. (2020-09-28). 情报理论与实践, https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJL AST&filename=QBLL20200925001&v=dsPu6H2oTgpk1VV%25mm d2FmopeSqRF1aKr13vMs%25mmd2Fu7a0I%25mmd2FKnLBGIe0UoWIqdAbR%25mmd2Fp4qXj7. 36 丁晓阳, 王兰成. 热点话题发现及展示软件[CP/CD]. 著作权登记号: 2020SR0861926. 37 张明新. 国内网络舆情建模与仿真研究综述[J]. 系统仿真学报, 2019, 31(10): 1983-1994. 38 陈栩杉, 张雄伟, 乔林, 等. 深度学习基本理论概述[J]. 军事通信技术, 2015, 36(4): 96-102. |
|
|
|