|
|
From Free to Fee: Exploring Askers Switch Behavior on Online Q&A Platforms from the Perspective of Cognitive Lock-in |
Zhao Yuxiang1, Liu Zhouying2, Zhu Qinghua2 |
1.School of Economics and Management, Nanjing University of Science and Technology, Nanjing 210094 2.School of Information Management, Nanjing University, Nanjing 210023 |
|
|
Abstract The wave of sharing economy promotes the innovation of the knowledge sharing model of the online Q&A platforms, deriving the payment-based mode based on the free mode. The number of users who have gradually increased their participation in the payment-based knowledge Q&A platforms is increasing. Based on the push-pull-mooring model and the status quo bias theory, this study explores the askers’ switch behavior from free- to payment-based knowledge Q&A platforms from the perspective of cognitive lock-in. The results of this study indicate that the askers’ switch intention has a significant positive impact on the switch behavior. In terms of mooring factors, financial cost and cognitive lock-in have significant negative impacts on the askers’ switch intention, whereas the subjective norm has a significant positive impact on the askers’ switch intention. Uncertainty cost, free mentality, and habit positively increase the askers’ cognitive lock-in. In terms of pushing factors, low satisfaction causes the askers to switch from free- to payment-based knowledge Q&A platforms, and has a mediating effect on the relationship between the askers’ cognitive lock-in and switch intention. In terms of pulling factors, perceived relative advantage and financial benefit have significant positive impacts on the askers’ switch intention, and the former construct has no significant mediating effect on the relationship between cognitive lock-in and switch intention. This research enriches the theoretical basis of the askers’ switch behavior from free- to payment-based knowledge Q&A platforms, and provides corresponding suggestions on the management and design of the payment-based knowledge Q&A platforms.
|
Received: 26 April 2019
|
|
|
|
1 张帅, 王文韬, 李晶. 用户在线知识付费行为影响因素研究[J]. 图书情报工作, 2017, 61(10): 94-100. 2 刘周颖, 赵宇翔. 基于语音互动的付费知识问答社区运营模式初探——以分答和值乎为例[J]. 图书与情报, 2017(4): 38-46. 3 QiT T, WangT M, MaY L, et al. Knowledge payment research: Status quo and key issues[J]. International Journal of Crowd Science, 2019, 3(2): 117-137. 4 赵宇翔, 刘周颖, 宋士杰. 从免费到付费: 在线知识问答平台用户标识对回答者转移行为的影响[J]. 图书与情报, 2019(2): 16-28. 5 赵杨, 袁析妮, 李露琪, 等. 基于社会资本理论的问答平台用户知识付费行为影响因素研究[J]. 图书情报知识, 2018(4): 15-23. 6 张颖, 朱庆华. 付费知识问答社区中提问者的答主选择行为研究[J]. 情报理论与实践, 2018, 41(12): 21-26. 7 张杨燚, 彭子健, 刘齐凯. 问答平台用户付费围观持续参与意愿的影响因素[J]. 图书馆论坛, 2018, 38(6): 86-94. 8 赵宇翔, 刘周颖, 宋士杰. 新一代知识问答平台中提问者付费意愿的影响因素探究[J]. 数据分析与知识发现, 2018(8): 16-30. 9 李武, 艾鹏亚, 谢蓉. 基于感知价值视角的在线付费问答平台用户付费意愿研究[J]. 图书情报知识, 2018(4): 4-14. 10 李武, 许耀心, 丛挺. 在线付费问答平台用户感知价值对付费意愿的影响——基于过去行为的调节效应分析[J]. 新闻界, 2018(10): 92-100. 11 李武, 艾鹏亚, 许耀心. 在线付费问答平台的用户付费模式及付费意愿研究[J]. 图书情报工作, 2018, 62(13): 24-29. 12 赵菲菲, 渠性怡, 周庆山. 在线问答社区用户知识付费意愿影响因素实证研究[J]. 情报资料工作, 2019, 40(1): 89-97. 13 艾瑞咨询. 2018年中国在线知识付费时长研究报告[EB/OL]. [2018-03-31]. http://www.iresearch.com.cn/Detail/report?id=3191 &isfree=0. 14 ZhaoY C, LiuZ Y, ChenS, et al. From free to fee: Exploring the factors that influence the askers’ switching behavior on online Q&A platforms[J]. Proceedings of the Association for Information Science and Technology, 2019, 56(1): 517-520. 15 PolitesG L, KarahannaE. Shackled to the status quo: The inhibiting effects of incumbent system habit, switching costs, and inertia on new system acceptance[J]. MIS Quarterly, 2012, 36(1): 21-42. 16 ShihH P. Cognitive lock-in effects on consumer purchase intentions in the context of B2C web sites[J]. Psychology & Marketing, 2012, 29(10): 738-751. 17 ShinD H, KimW Y. Forecasting customer switching intention in mobile service: An exploratory study of predictive factors in mobile number portability[J]. Technological Forecasting and Social Change, 2008, 75(6): 854-874. 18 LiZ Y, ChengY. From free to fee: Exploring the antecedents of consumer intention to switch to paid online content[J]. Journal of Electronic Commerce Research, 2014, 15(4): 281-299. 19 赵宇翔, 刘周颖. IT采纳和使用中用户转移行为研究综述[J]. 图书与情报, 2017(5): 86-96. 20 LaiJ Y, DebbarmaS, UlhasK R. An empirical study of consumer switching behaviour towards mobile shopping: A Push-Pull-Mooring model[J]. International Journal of Mobile Communications, 2012, 10(4): 386-404. 21 HsiehJ K, HsiehY C, ChiuH C, et al. Post-adoption switching behavior for online service substitutes: A perspective of the push-pull-mooring framework[J]. Computers in Human Behavior, 2012, 28(5): 1912-1920. 22 MoonB. Paradigms in migration research: Exploring ‘moorings’ as a schema[J]. Progress in Human Geography, 1995, 19(4): 504-524. 23 ZaubermanG. The intertemporal dynamics of consumer lock-in[J]. Journal of Consumer Research, 2003, 30(3): 405-419. 24 SamuelsonW, ZeckhauserR. Status quo bias in decision making[J]. Journal of Risk and Uncertainty, 1988, 1(1): 7-59. 25 ShapiroC, VarianH R. Information rules: A strategic guide to the network economy[M]. Boston: Harvard Business School Press, 1999. 26 BurnhamT A, FrelsJ K, MahajanV. Consumer switching costs: A typology, antecedents, and consequences[J]. Journal of the Academy of Marketing Science, 2003, 31(2): 109-126. 27 KimB, ChoiM, HanI. User behaviors toward mobile data services: The role of perceived fee and prior experience[J]. Expert Systems with Applications, 2009, 36(4): 8528-8536. 28 ChuC W, LuH P. Factors influencing online music purchase intention in Taiwan: An empirical study based on the value-intention framework[J]. Internet Research, 2007, 17(2): 139-155. 29 DoerrJ, BenlianA, VetterJ, et al. Pricing of content services—An empirical investigation of music as a service[C]// Proceedings of the SIGeBIZ Track of the Americas Conference on Information Processing. Heidelberg: Springer, 2010, 58: 13-24. 30 TsengF C, TengC I. Antecedents for user intention to adopt another auction site[J]. Internet Research, 2014, 24(2): 205-222. 31 XuY C, YangY P, ChengZ Y, et al. Retaining and attracting users in social networking services: An empirical investigation of cyber migration[J]. The Journal of Strategic Information Systems, 2014, 23(3): 239-253. 32 ParkS C, RyooS Y. An empirical investigation of end-users’ switching toward cloud computing: A two factor theory perspective[J]. Computers in Human Behavior, 2013, 29(1): 160-170. 33 ChengZ Y, YangY P, LimJ. Cyber migration: An empirical investigation on factors that affect users’ switch intentions in social networking sites[C]// Proceedings of the 42nd Hawaii International Conference on System Sciences. IEEE, 2009: 1-11. 34 XuX Y, LiH X, Heikkil?J, et al. Exploring individuals’ switching behaviour: An empirical investigation in social network games in China[C]// Proceedings of the 26th Bled eConference, 2013, 34: 141-153. 35 SunY Q, LiuD N, ChenS J, et al. Understanding users’ switching behavior of mobile instant messaging applications: An empirical study from the perspective of push-pull-mooring framework[J]. Computers in Human Behavior, 2017, 75: 727-738. 36 ParkS C. Deciding to update mobile applications: Reasons and consequences of inertia[J]. Asia Pacific Journal of Information Systems, 2016, 26(2): 268-289. 37 ShiX P, LinZ B, LiuJ, et al. Consumer loyalty toward smartphone brands: The determining roles of deliberate inertia and cognitive lock-in[J]. Information & Management, 2018, 55(7): 866-876. 38 HsiehP J, LinW S. Explaining resistance to system usage in the PharmaCloud: A view of the dual-factor model[J]. Information & Management, 2018, 55(1): 51-63. 39 HsiehP J. Healthcare professionals’ use of health clouds: Integrating technology acceptance and status quo bias perspectives[J]. International Journal of Medical Informatics, 2015, 84(7): 512-523. 40 胡莹莹, 赵玲, 范思. 跨渠道环境下习惯的双重影响及动态演化机制研究[J]. 管理学报, 2018, 15(4): 598-607. 41 胡珍苗, 程岩, 崔华玉. 在线内容用户服务升级意愿研究: 基于增值体验的心理惯性视角[J]. 管理评论, 2016, 28(11): 116-128. 42 WhittenD, WakefieldR L. Measuring switching costs in IT outsourcing services[J]. The Journal of Strategic Information Systems, 2006, 15(3): 219-248. 43 LeeK C, ChungN, LeeS. Exploring the influence of personal schema on trust transfer and switching costs in brick-and-click bookstores[J]. Information & Management, 2011, 48(8): 364-370. 44 HsuJ S C. Understanding the role of satisfaction in the formation of perceived switching value[J]. Decision Support Systems, 2014, 59: 152-162. 45 KimH W. The effects of switching costs on user resistance to enterprise systems implementation[J]. IEEE Transactions on Engineering Management, 2011, 58(3): 471-482. 46 DouW. Will Internet users pay for online content?[J]. Journal of Advertising Research, 2004, 44(4): 349-359. 47 LinT C, HsuJ S C, ChenH C. Customer willingness to pay for online music: The role of free mentality[J]. Journal of Electronic Commerce Research, 2013, 14(4): 315-333. 48 KimJ, LeeJ, ZoH. Toward sustainable freemium software: The roles of user satisfaction and use context[J]. Journal of Electronic Commerce Research, 2018, 19(3): 201-222. 49 YeL R, ZhangY, NguyenD D, et al. Fee-based online services: Exploring consumers’ willingness to pay[J]. Journal of International Technology and Information Management, 2004, 13(2): 133-141. 50 OuelletteJ A, WoodW. Habit and intention in everyday life: The multiple processes by which past behavior predicts future behavior[J]. Psychological Bulletin, 1998, 124(1): 54-74. 51 WangY Y, WangY S, LinT C. Developing and validating a technology upgrade model[J]. International Journal of Information Management, 2018, 38(1): 7-26. 52 YaoX, PhangC W, LingH. Understanding the influences of trend and fatigue in individuals’ SNS switching intention[C]// Proceedings of the 48th Hawaii International Conference on System Sciences. IEEE, 2015: 324-334. 53 FanL, SuhY H. Why do users switch to a disruptive technology? An empirical study based on expectation-disconfirmation theory[J]. Information & Management, 2014, 51(2): 240-248. 54 BhattacherjeeA, LimayemM, CheungC M K. User switching of information technology: A theoretical synthesis and empirical test[J]. Information & Management, 2012, 49(7-8): 327-333. 55 ChangI C, LiuC C, ChenK. The push, pull and mooring effects in virtual migration for social networking sites[J]. Information Systems Journal, 2014, 24(4): 323-346. 56 WuY L, TaoY H, LiC P, et al. The effects of customer satisfaction and switching barrier on users’ intention to switch in using mobile social network sites[C]// Proceedings of the International Conference on Innovation and Management, Kuala Lupur, Malaysia, July12-15, 2011. 57 LinT C, HuangS L. Understanding the determinants of consumers’ switching intentions in a standards war[J]. International Journal of Electronic Commerce, 2014, 19(1): 163-189. 58 HouA C Y, ChernC C, ChenH G, et al. ‘Migrating to a new virtual world’: Exploring MMORPG switching through human migration theory[J]. Computers in Human Behavior, 2011, 27(5): 1892-1903. 59 YeC, PotterR. The role of habit in post-adoption switching of personal information technologies: An empirical investigation[J]. Communications of the Association for Information Systems, 2011, 28(1): 585-610. 60 HuangQ, DavisonR M, GuJ B. Impact of personal and cultural factors on knowledge sharing in China[J]. Asia Pacific Journal of Management, 2008, 25(3): 451-471. 61 HauY S, KimB, LeeH, et al. The effects of individual motivations and social capital on employees’ tacit and explicit knowledge sharing intentions[J]. International Journal of Information Management, 2013, 33(2): 356-366. 62 ZhaoY C, PengX X, LiuZ Y, et al. Factors that affect asker’s pay intention in trilateral payment-based social Q&A platforms: From a benefit and cost perspective[J]. Journal of the Association for Information Science and Technology, 2020, 71(5): 516-528. 63 YeH J, KankanhalliA. Solvers’ participation in crowdsourcing platforms: Examining the impacts of trust, and benefit and cost factors[J]. The Journal of Strategic Information Systems, 2017, 26(2): 101-117. 64 HsiehG, KrautR E, HudsonS E. Why pay? Exploring how financial incentives are used for question & answer[C]// Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New York: ACM Press, 2010: 305-314. 65 LeeU, KimJ, YiE, et al. Analyzing crowd workers in mobile pay-for-answer Q&A[C]// Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New York: ACM Press, 2013: 533-542. 66 HamariJ, Sj?klintM, UkkonenA. The sharing economy: Why people participate in collaborative consumption[J]. Journal of the Association for Information Science and Technology, 2016, 67(9): 2047-2059. 67 LiC Y. Consumer behavior in switching between membership cards and mobile applications: The case of Starbucks[J]. Computers in Human Behavior, 2018, 84: 171-184. 68 JonesM A, MothersbaughD L, BeattyS E. Why customers stay: Measuring the underlying dimensions of services switching costs and managing their differential strategic outcomes[J]. Journal of Business Research, 2002, 55(6): 441-450. 69 BagozziR P, YiY. On the evaluation of structural equation models[J]. Journal of the Academy of Marketing Science, 1988, 16: 74-94. 70 FornellC, LarckerD F. Evaluating structural equation models with unobservable variables and measurement error[J]. Journal of Marketing Research, 1981, 18(1): 39-50. 71 PodsakoffP M, MacKenzieS B, LeeJ Y, et al. Common method biases in behavioral research: A critical review of the literature and recommended remedies[J]. Journal of Applied Psychology, 2003, 88(5): 879-903. |
|
|
|