|
|
Research on Domain Knowledge Alignment Based on Deep Learning: Knowledge Network Perspective |
Yu Chuanming1, Li Haonan2, An Lu3 |
1.School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073 2.School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan 430073 3.School of Information Management, Wuhan University, Wuhan 430072 |
|
|
Abstract With the rapid development of big data, knowledge networks have become highly diverse and complex among different languages, domains, and modalities. How to align and integrate heterogeneous knowledge networks under multi-source context is becoming a considerable challenge. Based on the deep representation learning of knowledge networks, this paper proposes a knowledge network alignment (KNA) model, which consists of three modules—the knowledge network construction module, the cross-lingual network representation module, and the statistical machine learning module. To verify the validity of the model, we conducted an empirical study on Chinese and English bilingual knowledge networks and projected heterogeneous knowledge networks into the same space. Based on this process, the statistical machine learning model was designed by using known alignment links between knowledge nodes among different networks, and unknown alignment links were predicted by the model. The KNA model obtained a Precision@1 value (0.7731) in the cross-lingual word co-occurrence network alignment task, which is higher than that of the baseline method (0.6806), which verifies the validity of the KNA model in cross-lingual knowledge network alignment. The research results are of great significance for improving the accuracy of knowledge node alignment among different knowledge networks and for promoting the integration of heterogeneous knowledge networks under multi-source context.
|
Received: 31 January 2019
|
|
|
|
1 周荣, 喻登科. 知识网络研究述评:结构、行为、演化与绩效[J]. 现代情报, 2018, 38(4): 170-176. 2 吕鹏辉, 刘盛博. 学科知识网络实证研究(Ⅳ)合作网络的结构与特征分析[J]. 情报学报, 2014, 33(4): 367-374. 3 吕鹏辉, 张士靖. 学科知识网络研究(Ⅰ)引文网络的结构、特征与演化[J]. 情报学报, 2014, 33(4): 340-348. 4 吕鹏辉, 张凌. 学科知识网络研究(Ⅱ)共被引网络的结构、特征与演化[J]. 情报学报, 2014, 33(4): 349-357. 5 赵一鸣, 吕鹏辉. 学科知识网络研究(Ⅲ)共词网络的结构、特征与演化[J]. 情报学报, 2014, 33(4): 358-366. 6 ZhangC W, BuY, DingY, et al. Understanding scientific collaboration: Homophily, transitivity, and preferential attachment[J]. Journal of the Association for Information Science and Technology, 2018, 69(1): 72-86. 7 李纲, 巴志超. 科研合作超网络下的知识扩散演化模型研究[J]. 情报学报, 2017, 36(3): 274-284. 8 巴志超, 李纲, 朱世伟. 基于知识超网络的科研合作行为实证研究和建模[J]. 情报学报, 2016, 35(6): 630-639. 9 AbrishamiA, AliakbaryS. Predicting citation counts based on deep neural network learning techniques[J]. Journal of Informetrics, 2019, 13(2): 485-499. 10 岳增慧, 许海云. 学科引证网络知识扩散特征研究[J]. 情报学报, 2019, 38(1): 1-12. 11 ChenH, ChenX Y, LiuH T. How does language change as a lexical network? An investigation based on written Chinese word co-occurrence networks[J]. PLoS ONE, 2018, 13(2): e0192545. 12 巴志超, 李纲, 朱世伟. 共现分析中的关键词选择与语义度量方法研究[J]. 情报学报, 2016, 35(2): 197-207. 13 李纲, 巴志超. 共词分析过程中的若干问题研究[J]. 中国图书馆学报, 2017, 43(4): 93-113. 14 TangJ, WuS, SunJ M, et al. Cross-domain collaboration recommendation[C]// Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2012: 1285-1293. 15 ManT, ShenH W, JinX L, et al. Cross-domain recommendation: An embedding and mapping approach[C]// Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, 2017: 2464-2470. 16 TangX W, WanX J, ZhangX. Cross-language context-aware citation recommendation in scientific articles[C]// Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval. New York: ACM Press, 2014: 817-826. 17 JiangZ R, YinY, GaoL C, et al. Cross-language citation recommendation via hierarchical representation learning on heterogeneous graph[C] // Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. New York: ACM Press, 2018: 635-644. 18 NassarH, GleichD F. Multimodal network alignment[C]// Proceedings of the SIAM International Conference on Data Mining. Philadelphia: Society for Industrial and Applied Mathematics, 2017: 615-623. 19 RoweisS T, SaulL K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500): 2323-2326. 20 BelkinM, NiyogiP. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Computation, 2003, 15(6): 1373-1396. 21 PerozziB, Al-RfouR, SkienaS. DeepWalk: Online learning of social representations[C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2014: 701-710. 22 TangJ, QuM, WangM Z, et al. Line: Large-scale information network embedding[C]// Proceedings of the 24th International Conference on World Wide Web. New York: ACM Press, 2015: 1067-1077. 23 WangD X, CuiP, ZhuW W. Structural deep network embedding[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2016: 1225-1234. 24 GroverA, LeskovecJ. Node2Vec: Scalable feature learning for networks[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2016: 855-864. 25 刘思, 刘海, 陈启买, 等. 基于网络表示学习与随机游走的链路预测算法[J]. 计算机应用, 2017, 37(8): 2234-2239. 26 陈丽, 朱裴松, 钱铁云, 等. 基于边采样的网络表示学习模型[J]. 软件学报, 2018, 29(3): 756-771. 27 梁磊. 面向属性网络图的表示学习与链接预测[D]. 上海: 华东师范大学, 2017. 28 庄严, 李国良, 冯建华. 知识库实体对齐技术综述[J]. 计算机研究与发展, 2016, 53(1): 165-192. 29 王莉, 郑婷一, 李明. 网络媒体大数据中的异构网络对齐关键技术和应用研究[J]. 太原理工大学学报, 2017, 48(3): 453-457. 30 IofciuT, FankhauserP, AbelF, et al. Identifying users across social tagging systems[C]// Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media. Palo Alto: AAAI Press, 2011. 31 LuC T, ShuaiH H, YuP S. Identifying your customers in social networks[C]// Proceedings of the 23rd ACM International Conference on Information and Knowledge Management. New York: ACM Press, 2014: 391-400. 32 KongX N, ZhangJ W, YuP S. Inferring anchor links across multiple heterogeneous social networks[C]// Proceedings of the 22nd ACM International Conference on Information & Knowledge Management. New York: ACM Press, 2013: 179-188. 33 ZhangJ W, YuP S. Integrated anchor and social link predictions across social networks[C]// Proceedings of the 24th International Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2015: 2125-2131. 34 GuS, Milenkovi?T. Graphlets versus node2vec and struc2vec in the task of network alignment[OL]. [2019-04-30]. https://arxiv.org/pdf/1805.04222. 35 ZhangS, TongH H. FINAL: Fast attributed network alignment[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2016: 1345-1354. 36 MalmiE, ChawlaS, GionisA. Lagrangian relaxations for multiple network alignment[J]. Data Mining and Knowledge Discovery, 2017, 31(5): 1331-1358. 37 余传明, 安璐. 从小数据到大数据——观点检索面临的三个挑战[J]. 情报理论与实践, 2016, 39(2): 13-19. 38 余传明, 冯博琳, 田鑫, 等. 基于深度表示学习的多语言文本情感分析[J]. 山东大学学报(理学版), 2018, 53(3): 13-23. 39 QiF C, LinY K, SunM S, et al. Cross-lingual lexical sememe prediction[C]// Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2018: 358-368. |
|
|
|