|
|
Research on Peer Effects of Knowledge Contribution Behavior on Answerers in Zhihu Q&A Community |
Chen Xiaohui, Hu Ping, Zhou Yicen |
School of Management, Xi an Jiaotong University, Xi an 710049 |
|
|
Abstract The emergence of Q&A community has transformed the original Q&A mode and expanded the means of knowledge acquisition. As the main contributor of knowledge, answerers are the core elements to promote knowledge transfer in Q&A communities. The existing research on Q&A community users is generally based on users attribute data with much less consideration for the network relationship data. This study considers the Chinese Q&A community “Zhihu” as the research object and crawls large-scale data under the two topics of “Pop Music” and “English Learning”. By constructing answerers following network, we can define and quantify the direct and indirect peer relationships. Moreover, we employ the network auto-regressive model to explore the impact of peer effect on answerers knowledge contribution behavior. It is discovered from this evaluation that even though answerers knowledge contribution behavior is positively influenced by direct and indirect peer effects, the indirect peer effect gradually weakens or even disappears with an increase in the answerers network density. Moreover, the clustering coefficient is observed to exhibit a negative impact on answerers knowledge contribution behavior.
|
Received: 27 June 2019
|
|
|
|
1 WangS, NoeR A. Knowledge sharing: A review and directions for future research[J]. Human Resource Management Review, 2010, 20(2): 115-131. 2 KamakuraW A, RussellG J. A probabilistic choice model for market segmentation and elasticity structure[J]. Journal of Marketing Research, 1989, 26(4): 379-390. 3 ManskiC F. Economic analysis of social interactions[J]. Journal of Economic Perspectives, 2000, 14(3): 115-136. 4 AralS, MuchnikL, SundararajanA. Distinguishing influence-based contagion from homophily-driven diffusion in dynamic networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(51): 21544-21549. 5 McPhersonM, Smith-LovinL, CookJ M. Birds of a feather: Homophily in social networks[J]. Annual Review of Sociology, 2001, 27(1): 415-444. 6 ConliskJ. Costly optimizers versus cheap imitators[J]. Journal of Economic Behavior & Organization, 1980, 1(3): 275-293. 7 GriskeviciusV, CialdiniR B, GoldsteinN J. Applying (and resisting) peer influence[J]. MIT Sloan Management Review, 2008, 49(2): 84. 8 EisenbergD, GolbersteinE, WhitlockJ L. Peer effects on risky behaviors: New evidence from college roommate assignments[J]. Journal of Health Economics, 2014, 33(1): 126-138. 9 BurkeM, MarlowC, LentoT. Feed me: Motivating newcomer contribution in social network sites[C]// Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New York: ACM Press, 2009: 945-954. 10 约翰·斯科特, 彼得·J.卡林顿. 社会网络分析手册[M]. 下卷. 刘军, 刘辉, 等译. 重庆: 重庆大学出版社, 2018: 716-719. 11 张宝生, 张庆普. 基于扎根理论的社会化问答社区用户知识贡献行为意向影响因素研究[J]. 情报学报, 2018, 37(10): 1034-1045. 12 赵欣, 张之光, 向希尧. 专业虚拟社区研究综述与PVC知识创造模型构建[J]. 科研管理, 2018, 39(11): 132-145. 13 ChiuC M, HsuM H, WangE T G. Understanding knowledge sharing in virtual communities: An integration of social capital and social cognitive theories[J]. Decision Support Systems, 2006, 42(3): 1872-1888. 14 BanduraA. Self-efficacy mechanism in human agency[J]. American Psychologist, 1982, 37(2): 122-147. 15 MolmL D. Coercive power in social exchange[M]. Cambridge: Cambridge University Press, 1997. 16 McLure WaskoM, FarajS. “It is what one does”: Why people participate and help others in electronic communities of practice[J]. The Journal of Strategic Information Systems, 2000, 9(2-3): 155-173. 17 刘海鑫, 刘人境. 企业虚拟社区个体知识贡献行为影响因素研究[J]. 科研管理, 2014, 35(6): 121-128. 18 沈宇飞, 廖博, 徐扬. 社会化问答社区中声誉系统对知识分享活动的影响研究[J]. 情报学报, 2018, 37(11): 1154-1163. 19 MaM, AgarwalR. Through a glass darkly: Information technology design, identity verification, and knowledge contribution in online communities[J]. Information Systems Research, 2007, 18(1): 42-67. 20 áCabrera, CollinsW C, SalgadoJ F. Determinants of individual engagement in knowledge sharing[J]. The International Journal of Human Resource Management, 2006, 17(2): 245-264. 21 JinJ H, LiY J, ZhongX J, et al. Why users contribute knowledge to online communities: An empirical study of an online social Q&A community[J]. Information & Management, 2015, 52(7): 840-849. 22 OrdK. Estimation methods for models of spatial interaction[J]. Journal of the American Statistical Association, 1975, 70(349): 120-126. 23 DowM M, BurtonM L, WhiteD R. Network autocorrelation: A simulation study of a foundational problem in regression and survey research[J]. Social Networks, 1982, 4(2): 169-200. 24 ZhangB, PavlouP A, KrishnanR. On direct vs. indirect peer influence in large social networks[J]. Information Systems Research, 2018, 29(2): 292-314. 25 ColemanJ S, KatzE, MenzelH. Medical innovation: A diffusion study[M]. New York: Bobbs-Merrill Co, 1966. 26 AralS, WalkerD. Creating social contagion through viral product design: A randomized trial of peer influence in networks[J]. Management Science, 2011, 57(9): 1623-1639. 27 BurkhardtM E. Social interaction effects following a technological change: A longitudinal investigation[J]. Academy of Management Journal, 1994, 37(4): 869-898. 28 BurtR S. Social contagion and innovation: Cohesion versus structural equivalence[J]. American Journal of Sociology, 1987, 92(6): 1287-1335. 29 StrangD, TumaN B. Spatial and temporal heterogeneity in diffusion[J]. American Journal of Sociology, 1993, 99(3): 614-639. 30 BurtR S. Structural holes: The social structure of competition[M]. Cambridge: Harvard University Press, 1995. 31 WangG, GillK, MohanlalM, et al. Wisdom in the social crowd: An analysis of Quora[C]// Proceedings of the 22nd International Conference on World Wide Web. New York: ACM Press, 2013: 1341-1352. 32 ChenL, BairdA, StraubD. Why do participants continue to contribute? Evaluation of usefulness voting and commenting motivational affordances within an online knowledge community[J]. Decision Support Systems, 2019, 118: 21-32. 33 王庆华, 肖宏伟. 中国电力消费对经济增长影响的空间溢出效应研究[J]. 宏观经济研究, 2018(2): 91-103, 157. 34 陈强. 高级计量经济学及Stata应用[M]. 第2版. 北京: 高等教育出版社, 2014: 578-579. |
|
|
|