|
|
An Overseas Review of the Spread of Opinions on Social Networks and Information Distortion Based on Information Cascade |
Wei Jianliang1, Zhu Qinghua2 |
1.Zhejiang Gongshang University, Hangzhou 310018 2.Nanjing University, Nanjing 210093 |
|
|
Abstract With the prevalence of false information and propaganda on social networks, more researchers are paying attention to information cascade. Many individual imitation behaviors enlarge the influence of information diffusion in social networks rapidly, but they also trigger great fluctuation and uncertainty, and distorted opinions are becoming increasingly frequent. Therefore, many researchers focus on this topic, from feature and structure discussions of information cascade, to modeling and its optimization based on real data, then to cascade forecasting and maximizing influence. Nevertheless, most of this research employs technique analysis, and seldom is it concerned with the effect, especially the suboptimum effect and opinion distortion caused by cascade. Based on this context, this paper proposed several research topics from the perspectives of the user, information, and structure.
|
Received: 19 October 2018
|
|
|
|
1 SunsteinC R, VermeuleA. Conspiracy theories: Causes and cures[J]. Journal of Political Philosophy, 2009, 17(2): 202-227. 2 NickersonR S. Confirmation bias: A ubiquitous phenomenon in many guises[J]. Review of General Psychology, 1998, 2(2): 175-220. 3 GarrettR K. Echo Chambers online? Politically motivated selective exposure among Internet news users[J]. Journal of Computer-Mediated Communication, 2009, 14(2): 265-285. 4 SawyerR K. Social emergence: Societies as complex systems[M]. Cambridge: Cambridge University Press, 2005: 1-38. 5 EasleyD, NetworksKleinberg J., crowds, and markets: Reasoning about a highly connected world[M]. Cambridge: Cambridge University Press, 2010: 2-506. 6 HowellL. Digital wildfires in a hyper-connected world[R]. WEF Report,2013, 3: 15-94. 7 BikhchandaniS, HirshleiferD, WelchI. A theory of fads, fashion, custom, and cultural change as informational cascades[J]. Journal of Political Economy, 1992, 100(5): 992-1026. 8 AndersonL R, HoltC A. Information cascades in the laboratory[J]. The American Economic Review, 1997, 87(5): 847-862. 9 ZongB, WuY H, SinghA K, et al. Inferring the underlying structure of information cascades[C]// Proceedings of the 12th IEEE International Conference on Data Mining. New York: IEEE, 2012: 1218-1223. 10 LeskovecJ, SinghA, KleinbergJ. Patterns of influence in a recommendation network[C]// Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining. Heidelberg: Springer, 2006: 380-389. 11 LeskovecJ, McGlohonM, FaloutsosC, et al. Patterns of cascading behavior in large blog graphs[C]// Proceedings of the 7th SIAM International Conference on Data Mining, Minneapolis, Minnesota, USA, 2007: 551-556. 12 Ba?osR A, Borge-HolthoeferJ, MorenoY. The role of hidden influentials in the diffusion of online information cascades[J]. EPJ Data Science, 2013, 2: 6. 13 ZiegelmeyerA, KoesslerF, BrachtJ, et al. Fragility of information cascades: An experimental study using elicited beliefs[J]. Experimental Economics, 2010, 13(2): 121-145. 14 GalubaW, AbererK, ChakrabortyD, et al. Outtweeting the Twitterers - Predicting information cascades in Microblogs[C]// Proceedings of the 3rd Conference on Online Social Networks. Berkeley: USENIX Association, 2010: 3. 15 RattanaritnontG, ToyodaM, KitsuregawaM. A study on characteristics of topic specific information cascade in Twitter[C]// Proceedings of the IEEE International Conference on Data Engineering. IEEE, 2011: 65-70. 16 GuoR C, ShaabaniE, BhatnagarA, et al. Toward order-of-magnitude cascade prediction[C]// Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. New York: ACM Press, 2015: 1610-1613. 17 GoelS, WattsD J, GoldsteinD G. The structure of online diffusion networks[C]// Proceedings of the 13th ACM Conference on Electronic Commerce. New York: ACM Press, 2012: 623-638. 18 WangD K, WuY, ZhangY. Two models for inferring network structure from cascades[C]// Proceedings of the International Conference on Internet Computing, Las Vegas, Nevada, USA, 2011: 59-63. 19 SadikovE, MedinaM, LeskovecJ, et al. Correcting for missing data in information cascades[C]// Proceedings of the Fourth ACM International Conference on Web Search and Data Mining. New York: ACM Press, 2011: 55-64. 20 Luczak-RoeschM, TinatiR, van KleekM, et al. From coincidence to purposeful flow? Properties of transcendental information cascades[C]// Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. New York: ACM Press, 2015: 633-638. 21 SarkarS, GuoR C, ShakarianP. Understanding and forecasting lifecycle events in information cascades[J]. Social Network Analysis and Mining, 2017, 7: 55. 22 FushimiT, KawazoeT, SaitoK, et al. What does an information diffusion model tell about social network structure?[C]// Proceedings of the Pacific Rim Knowledge Acquisition Workshop. Heidelberg: Springer, 2009: 122-136. 23 PeiS, MuchnikL, Andrade JrJ S, et al. Searching for superspreaders of information in real-world social media[J]. Scientific Reports, 2015, 4: 5547. 24 WegrzyckiK, SankowskiP, PacukA, et al. Why do cascade sizes follow a power-law?[C]// Proceedings of the 26th International Conference on World Wide Web. New York: ACM Press, 2017: 569-576. 25 JaliliM, PercM. Information cascades in complex networks[J]. Journal of Complex Networks, 2017, 5(5): 665-693. 26 VaastE, SafadiH, LapointeL, et al. Social media affordances for connective action: An examination of microblogging use during the gulf of Mexico oil spill[J]. MIS Quarterly, 2017, 41(4): 1179-1205. 27 HackettA, MelnikS, GleesonJ P. Cascades on a class of clustered random networks[J]. Physical Review E, 2011, 83(5): 056107. 28 ChoobdarS, RibeiroP, ParthasarathyS, et al. Dynamic inference of social roles in information cascades[J]. Data Mining and Knowledge Discovery, 2015, 29(5): 1152-1177. 29 GoelS, AndersonA, HofmanJ, et al. The structural virality of online diffusion[J]. Management Science, 2015, 62(1): 180-196. 30 SreenivasanS, ChanK S, SwamiA, et al. Information cascades in feed-based networks of users with limited attention[J]. IEEE Transactions on Network Science and Engineering, 2017, 4(2): 120-128. 31 WattsD J. A simple model of global cascades on random networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(9): 5766-5771. 32 GleesonJ P, CahalaneD J. Seed size strongly affects cascades on random networks[J]. Physical Review E, 2007, 75(5): 056103. 33 BarbieriN, BonchiF, MancoG. Cascade-based community detection[C]// Proceedings of the Sixth ACM International Conference on Web Search and Data Mining. New York: ACM Press, 2013: 33-42. 34 AkroufS, MeriemL, YahiaB, et al. Social network analysis and information propagation: A case study using Flickr and YouTube networks[J]. International Journal of Future Computer and Communication, 2013, 2(3): 246-252. 35 DasA, GollapudiS, KicimanE. Effect of persuasion on information diffusion in social networks[Z]. MSR-TR-2014-69, 2014: 1-8. 36 YuM, GuptaV, KolarM. An influence-receptivity model for topic based information cascades[C]// Proceedings of the IEEE International Conference on Data Mining. New York: IEEE, 2017: 18-21. 37 GómezV, KappenH J, KaltenbrunnerA. Modeling the structure and evolution of discussion cascades[C]// Proceedings of the 22nd ACM Conference on Hypertext and Hypermedia. New York: ACM Press, 2011: 181-190. 38 SaitoK, KimuraM, OharaK, et al. Learning asynchronous-time information diffusion models and its application to behavioral data analysis over social networks[J]. Journal of Computer Engineering and Informatics, 2013, 1(2): 30-57. 39 FrydmanC, KrajbichI. Using response times to infer others’ beliefs: An application to information cascades[R]. SSRN, 2017: 3-5. 40 CuiB. From Information cascade to knowledge transfer: Predictive analyses on social networks[D]. Rochester: Rochester Institute of Technology, 2016: 1-10. 41 XuS B, SmithD A. Contrastive training for models of information cascades[C]// Proceedings of Thirty-Second AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2018: 483-490. 42 MyersS A, ZhuC G, LeskovecJ. Information diffusion and external influence in networks[C]// Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2012: 33-41. 43 NguyenD T, ZhangH Y, DasS, et al. Least cost influence in multiplex social networks: Model representation and analysis[C]// Proceedings of the IEEE International Conference on Data Mining. New York: IEEE, 2013: 567-576. 44 LiuC, ZhanX X, ZhangZ K, et al. How events determine spreading patterns: Information transmission via internal and external influences on social networks[J]. New Journal of Physics, 2015, 17(11): 113045. 45 LiZ F, YanF H, JiangY C. Cross-layers cascade in multiplex networks[J]. Autonomous Agents and Multi-Agent Systems, 2015, 29(6): 1186-1215. 46 BorodinA, FilmusY, OrenJ. Threshold models for competitive influence in social networks[C]// Proceedings of the International Workshop on Internet and Network Economics. Heidelberg: Springer, 2010: 539-550. 47 BeutelA, PrakashB A, RosenfeldR, et al. Interacting viruses in networks: Can both survive?[C]// Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2012: 426-434. 48 MyersS A, LeskovecJ. Clash of the contagions: Cooperation and competition in information diffusion[C]// Proceedings of the IEEE 12th International Conference on Data Mining. New York: IEEE, 2012: 539-548. 49 KrishnanS, CadenaJ, RamakrishnanN. The dynamics of competing cascades in social media: Applications to agenda setting[C]// Proceedings of the 7th ACM WSDM Conference. New York: ACM Press, 2014. 50 LimY, OzdaglarA, TeytelboymA. A simple model of cascades in networks[OL]. http://www.t8el.com/wp-content/uploads/2015/08/SimpleCascades.pdf. 51 LimY, OzdaglarA, TeytelboymA. Competitive rumor spread in social networks[J]. ACM SIGMETRICS Performance Evaluation Review, 2017, 44(3): 7-14. 52 FisherJ C D, WoodersJ. Interacting information cascades: On the movement of conventions between groups[J]. Economic Theory, 2017, 63(1): 211-231. 53 CooperM J, DimitrovO, RauP R. A rose.com by any other name[J]. The Journal of Finance, 2001, 56(6): 2371-2388. 54 TafflerR J, TuckettD. A psychoanalytic interpretation of dot.com stock valuations[R]. SSRN, 2005: 1-27. 55 MatsubaraY, SakuraiY, PrakashB A, et al. Rise and fall patterns of information diffusion: model and implications[C]// Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2012: 6-14. 56 KobayashiT. Trend-driven information cascades on random networks[J]. Physical Review E, 2015, 92(6): 062823. 57 RotabiR, KamathK, KleinbergJ, et al. Cascades: A view from Audience[C]// Proceedings of the 26th International Conference on World Wide Web. New York: ACM Press, 2017: 587-596. 58 RosasF, HsiaoJ H, ChenK C. A technological perspective on information cascades via social learning[J]. IEEE Access, 2017, 5: 22605-22633. 59 KempeD, KleinbergJ, éTardos. Maximizing the spread of influence through a social network[C]// Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2003: 137-146. 60 WattsD J, DoddsP S. Influentials, networks, and public opinion formation[J]. Journal of Consumer Research, 2007, 34(4): 441-458. 61 KitsakM, GallosL K, HavlinS, et al. Identification of influential spreaders in complex networks[J]. Nature Physics, 2010, 6(11): 888-893. 62 SunM, ZhangX M, ZhuF. Escaping the herd: Experimental evidence on the need to be different in social networks[OL]. https://research.chicagobooth.edu/~/media/48615372D8234E31ABD294-FDD2B2A0EE.pdf. 63 Borge-HolthoeferJ, MorenoY. Absence of influential spreaders in rumor dynamics[J]. Physical Review E, 2012, 85(2): 026116. 64 ZhaoJ, LuiJ C S, TowsleyD, et al. Whom to follow: Efficient followee selection for cascading outbreak detection on online social networks[J]. Computer Networks, 2014, 75: 544-559. 65 HallR T, WhiteJ S, FieldsJ. Social relevance: Toward understanding the impact of the individual in an information cascade[J]. Proceeding of SPIE, 2016, 9826: id 98260C. 66 de KerchoveC, KringsG, LambiotteR, et al. Role of second trials in cascades of information over networks[J]. Physical Review E, 2009, 79(1): 016114. 67 ver SteegG, GhoshR, LermanK. What stops social epidemics?[C]// Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media. Palo Alto: AAAI Press, 2011: 377-384. 68 EftekharM, GanjaliY, KoudasN. Information cascade at group scale[C]// Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2013: 401-409. 69 KomatsuT, SatoH, NamatameA. Maximizing cascade of innovation on networks[J]. SICE Journal of Control, Measurement, and System Integration, 2013, 6(2): 66-75. 70 WangY B. Maximizing the speed of influence in social networks[D]. San Jose: San Jose State University, 2015: 2-9. 71 LiuH, IoannidisS, BhagatS, et al. Adding structure: Social network inference with graph priors[C]// Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York,: ACM Press, 2016. 72 Kapros-AnastasiadisG. Cascades on temporal networks[D]. Oxford: University of Oxford, 2012: 10-20. 73 HurdT R, GleesonJ P. On Watts’ cascade model with random link weights[J]. Journal of Complex Networks, 2013, 1(1): 25-43. 74 WengL L, RatkiewiczJ, PerraN, et al. The role of information diffusion in the evolution of social networks[C]// Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York,: ACM Press, 2013: 356-364. 75 MyersS A, LeskovecJ. The bursty dynamics of the twitter information network[C]// Proceedings of the 23rd International Conference on World Wide Web. New York: ACM Press, 2014: 913-924. 76 AntoniadesD, DovrolisC. Co-evolutionary dynamics in social networks: A case study of Twitter[J]. Computational Social Networks, 2015, 2(1): 14. 77 FarajtabarM, WangY, Gomez-RodriguezM, et al. Coevolve: A joint point process model for information diffusion and network co-evolution[C]// Proceedings of the International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2015: 1954-1962. 78 WangY, ShenH W, LiuS, et al. Learning user-specific latent influence and susceptibility from information cascades[C]// Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2015: 477-483. 79 WangS, YanZ, HuX, et al. Burst time prediction in cascades[C]// Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2015: 325-331. 80 ChengJ, AdamicL, DowP A, et al. Can cascades be predicted?[C]// Proceedings of the 23rd International Conference on World Wide Web. New York: ACM Press, 2014: 925-936. 81 ZhengH Y, WuJ. Fast information cascade prediction through spatiotemporal decompositions[C]// Proceedings of the 11th IEEE International Conference on Mobile Ad hoc and Sensor Systems. New York: IEEE, 2014: 154-162. 82 WuT, ChenL T, XianX P, et al. Full-scale cascade dynamics prediction with a local-first approach[OL]. https://arxiv.org/pdf/1512.08455.pdf. 83 SubbianK, PrakashB A, AdamicL. Detecting large reshare cascades in social networks[C]// Proceedings of the 26th International Conference on World Wide Web. New York: ACM Press, 2017: 597-605. 84 GuoR C, ShakarianP. A comparison of methods for cascade prediction[C]// Proceedings of the International Conference on Advances in Social Network Analysis and Mining. New York: IEEE, 2016: 591-598. 85 LagnierC, DenoyerL, GaussierE, et al. Predicting information diffusion in social networks using content and user’s profiles[C]// Proceedings of the European Conference on Information Retrieval. Heidelberg: Springer, 2013: 74-85. 86 CuiP, JinS F, YuL Y, et al. Cascading outbreak prediction in networks: A data-driven approach[C]// Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2013: 901-909. 87 HeX, RekatsinasT, FouldsJ, et al. Hawkestopic: A joint model for network inference and topic modeling from text-based cascades[C]// Proceedings of the International Conference on Machine Learning, Lille, French, 2015: 871-880. 88 ZhaoQ Y, ErdogduM A, HeH Y, et al. Seismic: A self-exciting point process model for predicting tweet popularity[C]// Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2015: 1513-1522. 89 KrishnanS, ButlerP, TandonR, et al. Seeing the forest for the trees: New approaches to forecasting cascades[C]// Proceedings of the 8th ACM Conference on Web Science. New York: ACM Press, 2016: 249-258. 90 LiC, MaJ Q, GuoX X, et al. DeepCas: An end-to-end predictor of information cascades[C]// Proceedings of the 26th International Conference on World Wide Web. New York: ACM Press, 2017: 577-586. 91 FriggeriA, AdamicL A, EcklesD, et al. Rumor cascades[C]// Proceedings of the International Conference on Weblogs and Social Media, Ann, Arbor, 2014. 92 FairchildR, AlsharmanM, HinvestN, et al. cascadesInformation, herding and emotional investors in an IPO[C]// Proceedings of the 11th International Conference on Computational and Financial Econometrics, London, UK, 2017. |
|
|
|