|
|
A Relationship Strength Calculation Method Based on the Relationship Circle and Individual Interaction Habits |
Ju Chunhua1,2, Tao Wanqiong1,2, Ma Xi ao3 |
1.School of Management and E-business, Zhejiang Gongshang University, Hangzhou 310018 2.Business Administration College, Zhejiang Gongshang University, Hangzhou 310018 3.School of Computer Science and Information Engineering, Zhejiang Gongshang University, Hangzhou 310018 |
|
|
Abstract Most studies on the strength of relationships between users of online social networks only consider the profile information and interaction activities of individual users. However, the relationship circle and individual interaction behavior are vital for computing the strength of the relationships. In this study, we propose a user relationship strength calculation method (IRC-IH) by considering the relationship circle and individual interaction behavior. Specifically, we first divide the users into different relationship circles by using the complete sub-graph-based relationship circle division algorithm. We then determine the topic activity of each relationship circle by computing the relatedness between the relationship circle and topic activity based on the standardized Google distance. Moreover, we compute the strength of the interaction activities by combing interaction habits and interaction frequency. Finally, we arrive at the user relationship strength by fusing the overlap rate of the relationship circle, the relationship circle similarity, interaction activity factor, and public account similarity. The experimental results show that the proposed method can effectively improve the accuracy of the relationship strength calculation.
|
Received: 28 February 2019
|
|
|
|
1 GranovetterM S. The strength of weak ties[J]. American Journal of Sociology, 1973, 78(6): 1360-1380. 2 张子柯. 在线社交网络信息传播机制与动力学研究综述[J]. 情报学报, 2017, 36(4): 422-431. 3 LiuF K, LeeH J. Use of social network information to enhance collaborative filtering performance[J]. Expert Systems with Applications, 2010, 37(7): 4772-4778. 4 赵云龙, 李艳兵. 社交网络用户的人格预测与在关系强度计算中的应用[C]// 中国科学院数学与系统科学研究院. 第七届(2012)中国管理学年会——新经济环境下中国管理变革与范式探索论文集, 天津, 2012. 5 TraversJ, MilgramS. An experimental study of the small world problem[J]. Sociometry, 1969, 32(4): 425-443. 6 沈洪洲, 袁勤俭. 基于社交网络的社交关系强度分类研究[J]. 情报学报. 2014, 33(8): 846-859. 7 MurrayS O, RankinJ H, MagillD W. Strong ties and job information[J]. Sociology of Work and Occupations, 1981, 8(1): 119-136. 8 许燕. 关系强度、社会互动与农民购买商业养老保险意愿——基于修订的S-O-R模型[J]. 金融理论与实践, 2016(4): 84-89. 9 LinN, WoelfelM W, LightS C. The buffering effect of social support subsequent to an important life event[J]. Journal of Health and Social Behavior, 1985, 26(3): 247-263. 10 GilbertE, KarahaliosK. Predicting tie strength with social media[C]// Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New York: ACM Press, 2009: 211-220. 11 耿瑞利, 申静. 社交网络群组用户知识共享行为动机研究: 以Facebook Group和微信群为例[J]. 情报学报, 2018, 37(10): 1022-1033. 12 琚春华, 陶婉琼, 许翀寰. 基于活动领域分类与间接关系融合的社会化网络用户关系强度计算模型[J]. 情报学报, 2016, 35(5): 539-548. 13 KahandaI, NevilleJ. Using transactional information to predict link strength in online social networks[C]// Proceedigns of the Third International AAAI Conference on Weblogs and Social Media. Palo Alto: AAAI Press, 2009: 235-243. 14 JuC H, TaoW Q. A novel relationship strength model for online social networks[J]. Multimedia Tools & Applications, 2017, 76(16): 17577-17594. 15 ChenJ P, LiuY, ZouM. Home location profiling for users in social media[J]. Information & Management, 2016, 53(1): 135-143. 16 孙怡帆, 李赛. 基于相似度的微博社交网络的社区发现方法[J]. 计算机研究与发展, 2014, 51(12): 2797-2807. 17 ChulyadyoR, LerayP. A personalized recommender system from probabilistic relational model and users’ preferences [J]. Procedia Computer Science, 2014, 35: 1063-1072. 18 BurtR S. Structural holes: The social structure of competition[M]. Cambridge: Harvard University Press, 2009. 19 CannistraciC V, Alanis-LobatoG, RavasiT. From link-prediction in brain connectomes and protein interactomes to the local-community-paradigm in complex networks[J]. Scientific Reports, 2013, 3: 1613. 20 AlbaR D, KadushinC. The intersection of social circles: A new measure of social proximity in networks[J]. Sociological Methods & Research, 1976, 5(1): 77-102. 21 韩忠明, 谭旭升, 陈炎, 等. 基于隐回归的用户关系强度模型[J]. 计算机应用, 2016, 36(2): 336-341. 22 李旭军, 刘业政. 聚合群体中关系强度对观点采纳的影响[J]. 计算机工程, 2016, 42(4): 226-234. 23 AhmedJ, VillataS, GovernatoriG. Information and friend segregation for online social networks: A user study[OL/J]. AI & Society, 2017, https://doi.org/10.1007/s00146-017-0789-1. 24 LuarnP, KuoH C, ChiuY P, et al. Social support on facebook: The influence of tie strength and gender differences[J]. International Journal of Electronic Commerce Studies, 2015, 6(1): 37-50. 25 JonesJ J , SettleJ E , BondR M , et al. Inferring tie strength from online directed behavior[J]. PLoS ONE, 2013, 8(1): e52168. 26 琚春华, 陈彦, 鲍福光. 融入网络结构与社交习惯的不对称用户关系强度计算[J]. 系统工程理论与实践, 2018, 38(8): 2135-2146. 27 PallaG, DerényiI, FarkasI, et al. Uncovering the overlapping community structure of complex networks in nature and society[J]. Nature, 2005, 435(7043): 814-818. 28 ZhaoX J, YuanJ, LiG D, et al. Relationship strength estimation for online social networks with the study on Facebook[J]. Neurocomputing, 2012, 95: 89-97. 29 CilibrasiR L, VitanyiP M B. The Google similarity distance[J]. IEEE Transactions on Knowledge & Data Engineering, 2007, 19(3): 370-383. 30 de SantisG, MucciardiM. From euclidean distances to APC models[J]. Quality & Quantity, 2017, 51(2): 829-846. 31 WeiJ, BuB, GuoX M, et al. The process of crisis information dissemination: Impacts of the strength of ties in social networks[J]. Kybernetes, 2014, 43(2): 178-191. 32 LinX, ShangT, LiuJ W. An estimation method for relationship strength in weighted social network graphs[J]. Journal of Computer and Communications, 2014, 2(4): 82-89. 33 XiangR J, NevilleJ, RogatiM. Modeling relationship strength in online social networks[C]// Proceedings of the 19th International Conference on World Wide Web. New York: ACM Press, 2010: 981-990. |
|
|
|