|
|
Research on the Storage of Product Classification Ontologies Based on Graph Databases |
Huang Qi1, Qian Yunjie2, Yuan Qinjian3, Lu Jiaying4 |
1.National Information Resource Management Nanjing Research Base, Nanjing University, Nanjing 210093 2.The Third Research Institute of the Ministry of Public Security, Shanghai 201204 3.School of Information Management, Nanjing University, Nanjing 210023 4.Data Centre of China Construction Bank, Shanghai 200120 |
|
|
Abstract With the help of relational concept analysis, this paper proposes a storage implementation of product classification ontology based on graph databases. This study then uses GPC as an example and Neo4j as the tool to demonstrate the storage of the product classification ontology. Finally, by designing the query experiment, the validity and efficiency of the proposed method are verified, and a series of valuable conclusions are drawn.
|
Received: 13 August 2018
|
|
|
|
1 de CesareS, FoyG, PartridgeC. Re-engineering data with 4D ontologies and graph databases[C]// Proceedings of International Conference on Advanced Information Systems Engineering. Heidelberg: Springer, 2013, 148: 304-316. 2 康杰华, 罗章璇. 基于图形数据库Neo4j的RDF数据存储研究[J]. 信息技术, 2015, 39(6): 115-117. 3 王红, 张青青, 蔡伟伟, 等. 基于Neo4j的领域本体存储方法研究[J]. 计算机应用研究, 2017, 34(8): 2404-2407. 4 MirandaS, OrciuoliF, SampsonD G. A SKOS-based framework for subject ontologies to improve learning experiences[J]. Computers in Human Behavior, 2016, 61: 609-621. 5 KivikangasP, IshizukaM. Improving semantic queries by utilizing UNL ontology and a graph database[C]// Proceedings of IEEE Sixth International Conference on Semantic Computing. New York: IEEE, 2012: 83-86. 6 CysneirosN C, SalgadoA C. Including hierarchical navigation in a graph database query language with an OBDA approach[C]// Proceedings of the 32nd International Conference on Data Engineering Workshops. New York: IEEE, 2016: 109-114. 7 ChaudhariM. Ontology-driven modeling of healthcare data using a graph database[C]// Proceedings of the Stanford Medicine X Conference. Palo Alto: Stanford University, 2015. 8 黄奇, 郑建国. 基于语义分析的产品分类本体查询研究[J]. 情报学报, 2015, 34(4): 398-413. 9 王昊, 朱惠, 邓三鸿. 基于形式概念分析的学科术语层次关系构建研究[J]. 情报学报, 2015, 34(6): 616-627. 10 陆佳莹, 袁勤俭, 黄奇, 等. 基于概念格理论的产品领域本体构建研究[J]. 现代图书情报技术, 2016(5): 38-46. 11 郑建国, 黄奇. 产品分类本体构建的语义分析[J]. 情报理论与实践, 2015, 38(9): 104-109. 12 WilleR. Restructuring lattice theory: An approach based on hierarchies of concepts[M]// Formal Concept Analysis. Heidelberg: Springer, 2009: 1-40. 13 RouaneM H, HuchardM, NapoliA, et al. A proposal for combining formal concept analysis and description logics for mining relational data[M]// Formal Concept Analysis. Heidelberg: Springer, 2007: 51-65. 14 吴鹏, 王曰芬, 丁晟春, 等. 基于本体的机械产品设计知识表示研究[J]. 情报理论与实践, 2013, 36(10): 91-95. 15 AnglesR. A comparison of current graph database models[C]// Proceedings of the 28th International Conference on Data Engineering Workshops. New York: IEEE, 2012: 171-177. 16 HolzschuherF, PeinlR. Querying a graph database-language selection and performance considerations[J]. Journal of Computer and System Sciences, 2016, 82(1): 45-68. 17 HaceneM R, NapoliA, ValtchevP, et al. Ontology learning from text using relational concept analysis[C]// Proceedings of the International MCETECH Conference on e-Technologies. New York: IEEE, 2008: 154-163. 18 BendaoudR, HaceneM R, ToussaintY, et al. Text-based ontology construction using relational concept analysis[J]. International Workshop on Ontology Dynamics, 2007, 62(15): 1343-1350 19 HorrocksI, LiL, TuriD, et al. The instance store: DL reasoning with large numbers of individuals[C]// Proceedings of the International Workshop on Description Logics. 2004: 31-40. |
|
|
|