|
|
Research on Sentiment Evaluation of Online Public Opinion Based on the Bayesian Model in a Mobile Environment: The Case of “China Women’s Volleyball Won the Championship in the Rio Olympics” in SinaWeibo |
Wang Xiwei1, 2, Zhang Liu1, Wen Qing1, Wang Nan’axue1 |
1. School of Management, Jilin University, Changchun 130022; 2. Research Center for Big Data Management, Jilin University, Changchun 130022 |
|
|
Abstract It is extremely important to understand and master the evolution rules of the emotional evolution of online public opinion forum users and to build an emotional evolution model within the mobile environment. It is also important for the relevant departments to strengthen the supervision of online public opinion information within the mobile environment and to guide the trends of online public opinion correctly. On the basis of the naive Bayes model, this paper uses training of word vectors, text preprocessing, and performance evaluation to process emotional evolution. Using the three visual dimensions of word frequency, region, and time, we constructed an emotional analysis model of users' online public opinion comments within a mobile environment, and, as an example, we used the sinaWeibo “China Women’s Volleyball Won the Championship in the Rio Olympics” topic to visualize and analyze the process of emotional evolution. The emotional analysis model constructed in this paper can be effectively applied to research on the emotional evolution of online public opinion users within the mobile environment. The empirical results demonstrate that Sina micro-blog users mainly applied positive emotions to the “China Women’s Volleyball Won the Championship in the Rio Olympics” topic. Developed areas, such as the municipalities directly under the central government and the coastal provinces, compared to the southwest, the less developed provinces in Northeast China and other less developed provinces, were more optimistic about the topic.
|
Received: 18 October 2017
|
|
|
|
[1] 中国互联网中心. 第39次中国互联网络发展状况统计报告[EB/OL]. [2016-8-3].http://www.cnnic.cn/hlwfzyj/hlwxzbg/hlwtjbg/201608/t20160803_54392.htm.
[2] Page B I, Shapiro R Y. Effects of public opinion on policy[J]. American Political Science Review, 1983, 77(1): 175-190.
[3] Hatton T J. Immigration, public opinion and the recession in Europe[J]. Economic Policy, 2016, 31(86): 205-246.
[4] Pak A, Paroubek P. Twitter as a corpus for sentiment analysis and opinion mining[C]// International Conference on Language Resources and Evaluation, Valletta, Malta. DBLP, 2010: 1320-1326.
唐晓波, 肖璐. 基于情感分析的评论挖掘模型研究[J]. 情报理论与实践, 2013, 36(7): 100-105.
[5] 黄发良, 冯时, 王大玲, 等. 基于多特征融合的微博主题情感挖掘[J]. 计算机学报, 2017, 40(4): 872-888.
[6] 谭雪晗, 涂艳, 马哲坤. 基于SNA的事故灾难舆情关键用户识别及治理[J]. 情报学报, 2017, 36(3): 297-306.
[7] 刘毅. 略论网络舆情的概念、特点、表达与传播[J]. 理论界,2007(1): 11-12.
[8] 郭韧, 陈福集, 李江竹, 等. 移动网络对网络舆情演化的影响研究[J]. 情报杂志, 2015, 34(7): 130-134.
[9] 王晰巍, 赵丹, 魏骏巍, 等. 移动环境下网络舆情信息传播模式及实证研究——以埃博拉话题为例[J]. 情报学报, 2015, 34(7): 683-692.
[10] Tsirakis N, Poulopoulos V, Tsantilas P, et al. Large scale opinion mining for social, news and blog data[J]. Journal of Systems and Software, 2017, 127(4): 237-248.
[11] 李勇, 蔡梦思, 邹凯, 等. 社交网络用户线上线下情感传播差异及影响因素分析——以“成都女司机被打”事件为例[J]. 情报杂志, 2016, 35(6): 80-85.
[12] 黄卫东, 林萍, 董怡, 等. 基于话题特征词的网络舆情参与者情感演化分析[J]. 情报杂志, 2015, 34(11): 117-122.
[13] 周清清, 章成志. 基于迁移学习微博情绪分类研究——以H7N9微博为例[J]. 情报学报, 2016, 35(4): 339-348.
[14] Fan R, Zhao J C, Chen Y, et al. Anger is more influential than joy: sentiment correlation in Weibo[J]. PLoS ONE, 2014, 9(10): e110184.
[15] Diab D M, El Hindi K M. Using differential evolution for fine tuning na?ve Bayesian classifiers and its application for text classification[J]. Applied Soft Computing, 2017, 54: 183-199.
[16] 杨艳霞. 基于分类的微博情感分析算法研究及实现[J]. 计算机与数字工程, 2017, 45(2): 197-200.
[17] 周志华. 机器学习: = Machine learning[M]. 北京: 清华大学出版社, 2016.
[18] 李涵昱, 钱力, 周鹏飞. 面向商品评论文本的情感分析与挖掘[J]. 情报科学, 2017, 35(1): 51-55.
[19] 张玥, 孙霄凌, 朱庆华. 突发公共事件舆情传播特征与规律研究——以新浪微博和新浪新闻平台为例[J]. 情报杂志, 2014, 33(4): 90-95.
[20] Alexa. Traffic Detail(sina.com.cn)[EB/OL]. [2017-1-17]. http://www. alexa.com/siteinfo/www.sina.com.cn.
[21] 新浪网. 新浪网发布2016年微博用户发展报告[EB/OL]. [2017-1-17]. http://data.weibo.com/report.
[22] 朱琳琳, 徐健. 网络评论情感分析关键技术及应用研究[J]. 情报理论与实践, 2017, 40(1): 121-126. |
|
|
|