|
|
A Method of Knowledge Evolution Analysis of ESI Research Fronts Based on Knowledge Element Co-occurrence |
Sun Zhen1, Leng Fuhai2 |
1. Institute of Scientific and Technical Information, Shandong University of Technology, Zibo 255000; 2. Institutes of Science and Development, Chinese Academy of Sciences, Beijing 100190 |
|
|
Abstract This paper proposes a method for analyzing the knowledge evolution of ESI research fronts based on knowledge element co-occurrence. The method consists of text mining and natural language processing techniques to quantitatively monitor the characteristics of the knowledge flow of research fronts from a microscopic perspective, the findings of which can be used in strategic intelligence research. Based on the documents cited from the main papers comprising the 2016 Research Front report, the knowledge elements related to key innovations from each document were first extracted using the named entity recognition technology and then the centrality and modularity features of the knowledge elements’ co-occurrence networks were analyzed using time series analysis; this was done with the intention of presenting the law of knowledge evolution as it relates to research fronts from the perspective of structural change in scientific knowledge. Through a comparison of the results from the co-occurrence analysis based on keywords and terms, the advanced level and practical applicability of this method were demonstrated using the results of the 2017 Research Front report and authoritative conference papers. This study showed that this method can be used to reveal the microscopic development path and the varying patterns of the research fronts by reorganizing and analyzing the key elements of innovation in the papers.
|
Received: 16 January 2018
|
|
|
|
[1] de Solla Price D J. Networks of scientific papers[J]. Science, 1965, 149(3683): 510-515. [2] de Solla Price D J. Foreword.in Eugene Garfield, Essays of an Information Scientist, Volume 3, 1977-1978[M]. Philadelphia: Institute for Scientific Information, 1979. [3] Pendlebury D.2016研究前沿及分析解读——研究前沿综述: 寻找科学的结构[M]. 北京: 科学出版社, 2017. [4] Small H.Co-citation in the scientific literature: A new measure of the relationship between two documents[J]. Journal of the Association for Information Science and Technology, 1973, 24(4): 265-269. [5] Morris S A, Yen G, Wu Z, et al.Time line visualization of research fronts[J]. Journal of the American Society for Information Science and Technology, 2003, 54(5): 413-422. [6] Chen C.CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of the American Society for information Science and Technology, 2006, 57(3): 359-377. [7] Kostoff R N.Database tomography for technical intelligence[J]. Competitive Intelligence Review, 1993, 4(1): 38-43. [8] 安新颖, 冷伏海. 基于非相关文献的知识发现原理研究[J]. 情报学报, 2006, 25(1): 87-93. [9] Allan J.Topic detection and tracking: Event-based information organization[M]. Netherlands: Kluwer Academic Publishers, 2002. [10] 王莉亚. 基于离群数据的主题演化研究[D]. 北京: 中国科学院研究生院, 2012. [11] 白如江. 基于语义计算的科学研究前沿识别研究[D]. 北京: 中国科学院大学, 2015. [12] Wang X, Wang Z, Xu S.Tracing scientist’s research trends realtimely[J]. Scientometrics, 2013, 95(2): 717-729. [13] 孙震. 基于科学论文多源数据的研究前沿集成识别模型研究[J]. 情报杂志, 2016, 35(8): 95-100. [14] 许晓阳, 郑彦宁, 刘志辉. 论文和专利相结合的研究前沿识别方法研究[J]. 图书情报工作, 2016, 60(24): 97-106. [15] Garfield E.Research fronts[J]. Current Contents, 1994, 41(10): 3-7. [16] Physics World. China forges ahead in global research[EB/OL]. [2016-12-01]. http://physicsworld.com/cws/article/news/2016/nov/21/ china-forges-ahead-in-global-research. [17] 李源潮. 深化科协系统改革为建设世界科技强国作出新贡献——在中国科协九届二次全委会上的讲话[J]. 科协论坛, 2017(2): 4-7. [18] 梁花侠, 白君礼. 基于ESI 数据库中国农业科学领域文献计量分析研究[J]. 科技管理研究, 2013, 33(5): 71-74. [19] 刘月雷, 聂峰英. 基于ESI数据库的地球科学领域文献计量分析研究[J]. 现代情报, 2015, 35(6): 81-85. [20] 周群, 周秋菊, 冷伏海. 生物科学研究前沿演进时序分析[J]. 中国科学院院刊, 2017, 32(4): 405-412. [21] 孙震, 冷伏海. 基于知识元的新型科学计量范式探析[J]. 情报学报, 2017, 36(6): 555-564. [22] 孙震, 冷伏海, 张晋辉. 基于知识元的科学计量方法及其实证研究[J]. 图书情报工作, 2017, 61(23): 89-99. [23] Song M, Heo G E, Kim S Y.Analyzing topic evolution in bioinformatics: investigation of dynamics of the field with conference data in DBLP[J]. Scientometrics, 2014, 101(1): 397-428. [24] Jensen S, Liu X, Yu Y, et al.Generation of topic evolution trees from heterogeneous bibliographic networks[J]. Journal of Informetrics, 2016, 10(2): 606-621. [25] Tong S, Ahlgren P.Evolution of three Nobel Prize themes and a Nobel snub theme in chemistry: a bibliometric study with focus on international collaboration[J]. Scientometrics, 2017, 112(1): 75-90. [26] 隗玲, 许海云, 胡正银, 等. 学科主题演化路径的多模式识别与预测——一个情报学学科主题演化案例[J]. 图书情报工作, 2016, 60(13): 71-81. [27] 刘自强, 王效岳, 白如江. 多维主题演化分析模型构建与实证研究[J]. 情报理论与实践, 2017, 40(3): 92-98. [28] 陶易, 马海群. 开放数据研究主题的知识结构演化分析[J]. 情报资料工作, 2017(4) : 30-35. [29] Callon M, Courtial J P, Turner W A, et al.From translations to problematic networks: An introduction to co-word analysis[J]. Information (International Social Science Council), 1983, 22(2): 191-235. [30] Yang Y, Wu M, Cui L.Integration of three visualization methods based on co-word analysis[J]. Scientometrics, 2011, 90(2): 659-673. [31] Burmaoglu S, Saritas O, Kıdak L B, et al.Evolution of connected health: a network perspective[J]. Scientometrics, 2017, 112(3): 1419-1438. [32] Law J, Bauin S, Courtial J, et al.Policy and the mapping of scientific change: A co-word analysis of research into environmental acidification[J]. Scientometrics, 1988, 14(3-4): 251-264. [33] Musgrove P, Binns R, Page-Kennedy T, et al.A method for identifying clusters in sets of interlinking Web spaces[J]. Scientometrics, 2003, 58(3): 657-672. [34] Kostoff R N, Stump J A, Johnson D, et al.The structure and infrastructure of the global nanotechnology literature[J]. Journal of Nanoparticle Research, 2006, 8(3): 301-321. [35] 邵作运, 李秀霞. 惩罚性矩阵分解及其在共词分析中的应用[J]. 图书情报工作, 2015, 59(13): 126-133, 148. [36] 周丽英, 冷伏海, 左文革. 引文耦合增强的共词分析方法改进研究——以 ESI 农业科学研究主题划分为例[J]. 情报理论与实践, 2015, 38(11): 120-125. [37] 赵宾, 董颖, 杨晓杰. 国内信息生态研究的知识图谱与热点主题——基于文献计量学共词分析的视角[J]. 情报科学, 2017, 35(9): 61-66, 164. [38] Ding Y, Song M, Han J, et al.Entitymetrics: Measuring the impact of entities[J]. PLoS ONE, 2013, 8(8): e71416. [39] Thomson Scientific. Research Front Methodology[EB/OL]. [2015-11-30]. http://www.esi-topics.com/RFmethodology.html. [40] Jessop D M, Adams S E, Willighagen E L, et al.OSCAR4: a flexible architecture for chemical text-mining[J]. Journal of Cheminformatics, 2011, 3(1): 41. [41] Suppe F.The structure of a scientific paper[J]. Philosophy of Science, 1998, 65(3): 381-405. [42] Teufel S.Argumentative zoning: Information extraction from scientific text[D]. Edinburgh: University of Edinburgh, 2000. [43] 黄永, 陆伟, 程齐凯. 学术文本的结构功能识别——基于章节内容的识别[J]. 情报学报, 2016, 35(3): 293-300. [44] 黄永, 陆伟, 程齐凯, 等. 学术文本的结构功能识别——在学术搜索中的应用[J]. 情报学报, 2016, 35(4): 425-431. [45] 方龙, 李信, 黄永, 等. 学术文本的结构功能识别——在关键词自动抽取中的应用[J]. 情报学报, 2017, 36(6): 599-605. [46] Laban W A, Etgar L.Depleted hole conductor-free lead halide iodide heterojunction solar cells[J]. Energy & Environmental Science, 2013, 6(11): 3249-3253. [47] Blondel V D, Guillaume J L, Lambiotte R, et al.Fast unfolding of communities in large networks[J]. Journal of Statistical Mechanics: Theory and Experiment, 2008(10): P10008. [48] Yang W S, Park B W, Jung E H, et al.Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells[J]. Science, 2017, 356(6345): 1376-1379. [49] Hao F, Stoumpos C C, Cao D H, et al.Lead-free solid-state organic-inorganic halide perovskite solar cells[J]. Nature Photonics, 2014, 8(6): 489-494. [50] Kim H S, Lee C R, Im J H, et al.Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Scientific Reports, 2012, 2(8): 591. [51] Niu G, Li W, Meng F, et al.Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells[J]. Journal of Materials Chemistry A, 2014, 2(3): 705-710. [52] 杨旭东, 陈汉, 毕恩兵,等. 高效率钙钛矿太阳电池发展中的关键问题[J]. 物理学报, 2015, 64(3): 68-77. [53] Li Y, Cooper J K, Buonsanti R, et al.Fabrication of planar heterojunction perovskite solar cells by controlled low-pressure vapor annealing[J]. The Journal of Physical Chemistry Letters, 2015, 6(3): 493-499. [54] Lang F, Gluba M A, Albrecht S, et al.Perovskite solar cells with large-area CVD-graphene for tandem solar cells[J]. The Journal of Physical Chemistry Letters, 2015, 6(14): 2745-2750. [55] Li X, Rui M, Song J, et al.Carbon and graphene quantum dots for optoelectronic and energy devices: a review[J]. Advanced Functional Materials, 2015, 25(31): 4929-4947. [56] Carli S, Baena J P C, Marianetti G, et al. A new 1,3,4-oxadiazole-based hole-transport material for efficient CH3NH3PbBr3 perovskite solar cells[J]. ChemSusChem, 2016, 9(7): 657-661. [57] Beal R E, Slotcavage D J, Leijtens T, et al.Cesium lead halide perovskites with improved stability for tandem solar cells[J]. The Journal of Physical Chemistry Letters, 2016, 7(5): 746-751. [58] Xu Y, Wang Y, Yu J, et al.Performance improvement of perovskite solar cells based on pcbm-modified ZnO-nanorod arrays[J]. IEEE Journal of Photovoltaics, 2016, 6(6): 1530-1536. [59] Yu X, Chen S, Yan K, et al.Enhanced photovoltaic performance of perovskite solar cells with mesoporous SiO2 scaffolds[J]. Journal of Power Sources, 2016, 325: 534-540. [60] Kang J, Wang L W.High Defect Tolerance in Lead Halide Perovskite CsPbBr3[J]. The Journal of Physical Chemistry Letters, 2017, 8(2): 489-493. [61] Qiu X, Cao B, Yuan S, et al.From unstable CsSnI3 to air-stable Cs2SnI6: A lead-free perovskite solar cell light absorber with bandgap of 1.48 eV and high absorption coefficient[J]. Solar Energy Materials and Solar Cells, 2017, 159: 227-234. [62] Nia N Y, Matteocci F, Cina L, et al.High-efficiency perovskite solar cell based on poly (3-hexylthiophene): Influence of molecular weight and mesoscopic scaffold layer[J]. ChemSusChem, 2017, 10(19): 3854. [63] Clarivate Analytics. 科睿唯安与中国科学院联合发布《2017研究前沿》——连续4年揭示全球热点和新兴研究前沿[EB/OL]. [2017-11-02]. http://clarivate.com.cn/press/press20171102/. [64] 中国科学院物理研究所. 第一届新型太阳能电池暨钙钛矿太阳能电池学术研讨会[EB/OL]. [2017-11-05]. http://solar.iphy. ac.cn/2014/solar_conf.html. [65] 马费成. 情报学的进展与深化[J]. 情报学报, 1996, 15(5): 337-343. [66] Mckenzie L.Want to analyze millions of scientific papers all at once? Here’s the best way to do it[EB/OL]. [2017-07-22].https://www.sciencemag.org/news/2017/07/want-analyze-millions-scientific-papers-all-once-here-s-best-way-do-it. |
|
|
|