|
|
Theoretical Basis and Empirical Research of Citation Discontinuance |
Li Hao, Hou Jianhua, Zhang Yang |
School of Information Management, Sun Yat-sen University, Guangzhou 510006 |
|
|
Abstract Citation analysis is an important method for tracking and evaluating the spread and impact of scientific knowledge. However, existing research often focuses only on the diffusion process of citations and neglects the phenomenon of citation discontinuance, which refers to a situation in which a document is not cited again within a certain period after its first citation. Conceptualizing and quantitatively studying this phenomenon requires the systematic construction of a theoretical foundation and an analytical framework for citation discontinuance. By considering theories such as the diffusion of innovations, literature obsolescence, scientific paradigm shifts, and knowledge evolution, this paper provides theoretical explanations for the phenomenon of citation discontinuance, analyzes its connotations, and distinguishes between three types of citation trajectories: complete, transient, and intermittent citation discontinuance. Based on this, this study designed a quantitative identification method for citation discontinuance and conducted an empirical analysis. The proposed concept of citation discontinuance further reveals the durability and nonlinear characteristics of citation diffusion, aiming to provide new insights for modeling citation diffusion. This study also constructed an analytical framework for citation discontinuance to help scientific research institutions and researchers better understand the impact and timeliness of research outcomes, with the expectation of further enhancing the explanatory power of citation analysis methods and citation diffusion research in practical applications, such as literature lifecycle management and scientific evaluation.
|
Received: 19 September 2024
|
|
|
|
1 Garfield E. Citation indexes for science: a new dimension in documentation through association of ideas[J]. Science, 1955, 122(3159): 108-111. 2 Garfield E. Is citation analysis a legitimate evaluation tool?[J]. Scientometrics, 1979, 1(4): 359-375. 3 Chen C M, Hicks D. Tracing knowledge diffusion[J]. Scientometrics, 2004, 59(2): 199-211. 4 Liu Y X, Rafols I, Rousseau R. A framework for knowledge integration and diffusion[J]. Journal of Documentation, 2012, 68(1): 31-44. 5 Min C, Ding Y, Li J, et al. Innovation or imitation: the diffusion of citations[J]. Journal of the Association for Information Science and Technology, 2018, 69(10): 1271-1282. 6 Lewison G, Rippon I, Wooding S. Tracking knowledge diffusion through citations[J]. Research Evaluation, 2005, 14(1): 5-14. 7 Kessler M M. Bibliographic coupling between scientific papers[J]. American Documentation, 1963, 14(1): 10-25. 8 de Solla Price D J. Networks of scientific papers: the pattern of bibliographic references indicates the nature of the scientific research front[J]. Science, 1965, 149(3683): 510-515. 9 Small H. Co-citation in the scientific literature: a new measure of the relationship between two documents[J]. Journal of the American Society for Information Science, 1973, 24(4): 265-269. 10 Pieters R, Baumgartner H. Who talks to whom? Intra- and interdisciplinary communication of economics journals[J]. Journal of Economic Literature, 2002, 40(2): 483-509. 11 Zhou P, Su X N, Leydesdorff L. A comparative study on communication structures of Chinese journals in the social sciences[J]. Journal of the American Society for Information Science and Technology, 2010, 61(7): 1360-1376. 12 Rafols I. Knowledge integration and diffusion: measures and mapping of diversity and coherence[M]// Measuring Scholarly Impact: Methods and Practice. Cham: Springer, 2014: 169-190. 13 Yang J Q, Bu Y, Lu W, et al. Identifying keyword sleeping beauties: a perspective on the knowledge diffusion process[J]. Journal of Informetrics, 2022, 16(1): 101239. 14 de Solla Price D J. A general theory of bibliometric and other cumulative advantage processes[J]. Journal of the American Society for Information Science, 1976, 27(5): 292-306. 15 Barabási A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439): 509-512. 16 Fortunato S, Bergstrom C T, B?rner K, et al. Science of science[J]. Science, 2018, 359(6379): eaao0185. 17 Chen C M, Chen Y, Horowitz M, et al. Towards an explanatory and computational theory of scientific discovery[J]. Journal of Informetrics, 2009, 3(3): 191-209. 18 Wu L F, Wang D S, Evans J A. Large teams develop and small teams disrupt science and technology[J]. Nature, 2019, 566(7744): 378-382. 19 Li J, Ye F Y. A probe into the citation patterns of high-quality and high-impact publications[J]. Malaysian Journal of Library & Information Science, 2014, 19(2): 31-47. 20 Zhang R Z, Wang J, Mei Y J. Search for evergreens in science: a functional data analysis[J]. Journal of Informetrics, 2017, 11(3): 629-644. 21 Avramescu A. Actuality and obsolescence of scientific literature[J]. Journal of the American Society for Information Science, 1979, 30(5): 296-303. 22 van Dalen H P, Henkens K. Signals in science - on the importance of signaling in gaining attention in science[J]. Scientometrics, 2005, 64(2): 209-233. 23 Ye F Y, Bornmann L. “Smart girls” versus “sleeping beauties” in the sciences: the identification of instant and delayed recognition by using the citation angle[J]. Journal of the Association for Information Science and Technology, 2018, 69(3): 359-367. 24 van Raan A F J. Sleeping beauties in science[J]. Scientometrics, 2004, 59(3): 467-472. 25 Zeng C J, Qi E P, Li S S, et al. Statistical characteristics of breakthrough discoveries in science using the metaphor of black and white swans[J]. Physica A: Statistical Mechanics and Its Applications, 2017, 487: 40-46. 26 Egghe L, Guns R, Rousseau R. Thoughts on uncitedness: Nobel laureates and fields medalists as case studies[J]. Journal of the American Society for Information Science and Technology, 2011, 62(8): 1637-1644. 27 李凌英, 闵超, 孙建军. 引文波峰的量化与分布探究[J]. 情报学报, 2019, 38(7): 697-708. 28 张靖雯, 孙建军, 闵超. 引文起飞的定义与量化方法研究[J]. 情报学报, 2019, 38(8): 786-797. 29 Li J, Shi D B, Zhao S X, et al. A study of the “heartbeat spectra” for “sleeping beauties”[J]. Journal of Informetrics, 2014, 8(3): 493-502. 30 Hou J H, Li H, Zhang Y. Identifying the princes base on altmetrics: an awakening mechanism of sleeping beauties from the perspective of social media[J]. PLoS One, 2020, 15(11): e0241772. 31 Cano V, Lind N C. Citation life cycles of ten citation classics[J]. Scientometrics, 1991, 22(2): 297-312. 32 闵超, YingDing, 李江, 等. 单篇论著的引文扩散[J]. 情报学报, 2018, 37(4): 341-350. 33 Rogers E M. The communication of innovations[M]. New York: The Free Press, 1983. 34 Amin M, Mabe M A. Impact factors: use and abuse[J]. Medicina (Buenos Aires), 2003, 63(4): 347-354. 35 Walters G D. The citation life cycle of articles published in 13 American Psychological Association Journals: a 25-year longitudinal analysis[J]. Journal of the American Society for Information Science and Technology, 2011, 62(8): 1629-1636. 36 Eom Y H, Fortunato S. Characterizing and modeling citation dynamics[J]. PLoS One, 2011, 6(9): e24926. 37 Wallace M L, Larivière V, Gingras Y. Modeling a century of citation distributions[J]. Journal of Informetrics, 2009, 3(4): 296-303. 38 Barnett G, Fink E L, Eckert M B. The diffusion of academic information: a mathematical model of citations in the sciences, social sciences and arts and humanities[C]// Proceedings of the Annals Meeting of the International Communication Association. New York: Routledge, 1986: ED275328. 39 Li J, Ye F Y. The phenomenon of all-elements-sleeping-beauties in scientific literature[J]. Scientometrics, 2012, 92(3): 795-799. 40 Hou J H, Yang X C. Social media-based sleeping beauties: defining, identifying and features[J]. Journal of Informetrics, 2020, 14(2): 101012. 41 Baumgartner S E, Leydesdorff L. Group-based trajectory modeling (GBTM) of citations in scholarly literature: dynamic qualities of “transient” and “sticky knowledge claims”[J]. Journal of the Association for Information Science and Technology, 2014, 65(4): 797-811. 42 Zamani M, Aghion E, Pollner P, et al. Anomalous diffusion in the citation time series of scientific publications[J]. Journal of Physics: Complexity, 2021, 2(3): 035024. 43 Chakraborty J, Pradhan D K, Nandi S. A multiple k-means cluster ensemble framework for clustering citation trajectories[J]. Journal of Informetrics, 2024, 18(2): 101507. 44 Crane D. Invisible colleges: diffusion of knowledge in scientific communities[M]. Chicago: The University of Chicago Press, 1972. 45 Small H, Griffith B C. The structure of scientific literatures I: identifying and graphing specialties[J]. Science Studies, 1974, 4(1): 17-40. 46 Merton R K, Storer N W. The sociology of science: theoretical and empirical investigations[M]. Chicago: The University of Chicago Press, 1973. 47 Keaveney S M. Customer switching behavior in service industries: an exploratory study[J]. Journal of Marketing, 1995, 59(2): 71-82. 48 York C, Turcotte J. Vacationing from Facebook: adoption, temporary discontinuance, and readoption of an innovation[J]. Communication Research Reports, 2015, 32(1): 54-62. 49 Cao Y Y, Long Q Q, Hu B L, et al. Exploring elderly users’ MSNS intermittent discontinuance: a dual-mechanism model[J]. Telematics and Informatics, 2021, 62: 101629. 50 Soliman W, Tuunainen V K. A tale of two frames: exploring the role of framing in the use discontinuance of volitionally adopted technology[J]. Information Systems Journal, 2022, 32(3): 473-519. 51 Ng Y M M. Twitter intermittent and permanent discontinuance: a multi-method approach to study innovation diffusion[J]. Computers in Human Behavior, 2023, 138: 107482. 52 Hou L, Guo X Y, Pan X. Intermittent social media usage: an empirical examination on the temporary discontinuance of blogging and its impact on subsequent user behavior[J]. Information Processing & Management, 2023, 60(5): 103461. 53 Arao L H, da Costa Santos M J V, da Silveira Guedes V L. The half-life and obsolescence of the literature science area: a contribution to the understanding the chronology of citations in academic activity[J]. Qualitative and Quantitative Methods in Libraries, 2015, 4(3): 603-610. 54 de Solla Price D J. Little science, big science[M]. New York: Columbia University Press, 1963. 55 Gou Z Y, Meng F, Chinchilla-Rodríguez Z, et al. Encoding the citation life-cycle: the operationalization of a literature-aging conceptual model[J]. Scientometrics, 2022, 127(8): 5027-5052. 56 Kuhn T S. The structure of scientific revolutions[M]. Chicago: The University of Chicago Press, 1962. 57 Costas R, van Leeuwen T N, van Raan A F J. Is scientific literature subject to a ‘Sell-By-Date’? A general methodology to analyze the ‘durability’ of scientific documents[J]. Journal of the American Society for Information Science and Technology, 2010, 61(2): 329-339. 58 Ravindran T, Yeow Kuan A C, Hoe Lian D G. Antecedents and effects of social network fatigue[J]. Journal of the Association for Information Science and Technology, 2014, 65(11): 2306-2320. 59 Chakraborty T, Nandi S. Universal trajectories of scientific success[J]. Knowledge and Information Systems, 2018, 54(2): 487-509. 60 Barber B. Resistance by scientists to scientific discovery[J]. American Journal of Clinical Hypnosis, 1963, 5(4): 326-335. 61 Campanario J M. Rejecting and resisting Nobel class discoveries: accounts by Nobel laureates[J]. Scientometrics, 2009, 81(2): 549-565. 62 Gorry P, El Aichouchi A. Delayed recognition in science: different causes of sleeping and awakening of scientific discoveries[C]// Proceedings of the 8th Biennial Atlanta Conference on Science & Innovation Policy, Atlanta, United States, 2019: hal-02196295. 63 Garfield E. Delayed recognition in scientific discovery: citation frequency analysis aids the search for case histories[J]. Current Contents, 1989, 23: 3-9. 64 梁永霞, 刘则渊, 杨中楷. 引文分析学的知识流动理论探析[J]. 科学学研究, 2010, 28(5): 668-674. 65 Shibayama S, Wang J. Measuring originality in science[J]. Scientometrics, 2020, 122(1): 409-427. 66 Schilling M A. A “small-world” network model of cognitive insight[J]. Creativity Research Journal, 2005, 17(2/3): 131-154. 67 Sheng L B, Lyu D Q, Ruan X M, et al. The association between prior knowledge and the disruption of an article[J]. Scientometrics, 2023, 128(8): 4731-4751. 68 Li J X, Chen J Y. Measuring destabilization and consolidation in scientific knowledge evolution[J]. Scientometrics, 2022, 127(10): 5819-5839. 69 张明新, 叶银娇. 传播新技术采纳的“间歇性中辍”现象研究: 来自东西方社会的经验证据[J]. 新闻与传播研究, 2014, 21(6): 78-98, 127-128. 70 Ye Y J, Zhang M X. Intermittent use of social media: Facebook and Weibo use, their predictors and social and political implications[M]// New Media and Chinese Society. Singapore: Spring, 2017: 75-93. 71 Leydesdorff L. Theories of citation?[J]. Scientometrics, 1998, 43(1): 5-25. 72 Cronin B. The need for a theory of citing[J]. Journal of Documentation, 1981, 37(1): 16-24. 73 Garfield E. Can citation indexing be automated?[C]// Proceedings Symposium of the Statistical Association Methods for Mechanized Documentation. Washington, DC: National Bureau of Standards, 1964: 189-192. 74 Bornmann L, Daniel H D. What do citation counts measure? A review of studies on citing behavior[J]. Journal of Documentation, 2008, 64(1): 45-80. 75 Gilbert G N. Referencing as persuasion[J]. Social Studies of Science, 1977, 7(1): 113-122. 76 Moed H F, Garfield E. In basic science the percentage of “authoritative” references decreases as bibliographies become shorter[J]. Scientometrics, 2004, 60(3): 295-303. 77 Boyack K W, van Eck N J, Colavizza G, et al. Characterizing in-text citations in scientific articles: a large-scale analysis[J]. Journal of Informetrics, 2018, 12(1): 59-73. 78 Hu Z G, Chen C M, Liu Z Y. Where are citations located in the body of scientific articles? A study of the distributions of citation locations[J]. Journal of Informetrics, 2013, 7(4): 887-896. 79 Huang S Z, Qian J J, Huang Y, et al. Disclosing the relationship between citation structure and future impact of a publication[J]. Journal of the Association for Information Science and Technology, 2022, 73(7): 1025-1042. 80 Tahamtan I, Bornmann L. What do citation counts measure? An updated review of studies on citations in scientific documents published between 2006 and 2018[J]. Scientometrics, 2019, 121(3): 1635-1684. 81 Liu Y M, Chen M. Applying text similarity algorithm to analyze the triangular citation behavior of scientists[J]. Applied Soft Computing, 2021, 107: 107362. 82 Kong L, Zhang W, Hu H T, et al. Transdisciplinary fine-grained citation content analysis: a multi-task learning perspective for citation aspect and sentiment classification[J]. Journal of Informetrics, 2024, 18(3): 101542. 83 Yousif A, Niu Z D, Tarus J K, et al. A survey on sentiment analysis of scientific citations[J]. Artificial Intelligence Review, 2019, 52(3): 1805-1838. 84 White M D, Wang P L. A qualitative study of citing behavior: contributions, criteria, and metalevel documentation concerns[J]. The Library Quarterly, 1997, 67(2): 122-154. 85 Priem J. Altmetrics[M]// Beyond Bibliometrics: Harnessing Multidimensional Indicators of Scholarly Impact. Cambridge: The MIT Press, 2014: 263-288. 86 Xu S M. Issues in the interpretation of “altmetrics” digital traces: a review[J]. Frontiers in Research Metrics and Analytics, 2018, 3: 29. 87 Sugimoto C R, Work S, Larivière V, et al. Scholarly use of social media and altmetrics: a review of the literature[J]. Journal of the Association for Information Science and Technology, 2017, 68(9): 2037-2062. 88 侯剑华, 郑碧丽, 张洋. 科学知识扩散研究: 概念界定、理论基础与体系重构[J]. 现代情报, 2020, 40(9): 117-126. 89 Toupin R, Millerand F, Larivière V. Who tweets climate change papers? Investigating publics of research through users’ descriptions[J]. PLoS One, 2022, 17(6): e0268999. 90 Zhang L, Gou Z Y, Fang Z C, et al. Who tweets scientific publications?A large-scale study of tweeting audiences in all areas of research[J]. Journal of the Association for Information Science and Technology, 2023, 74(13): 1485-1497. 91 Haustein S, Bowman T D, Costas R. Interpreting ‘altmetrics’: viewing acts on social media through the lens of citation and social theories[M]// Theories of Informetrics and Scholarly Communication. Berlin: De Gruyter Saur, 2016: 372-406. 92 Mohammadi E, Thelwall M. Mendeley readership altmetrics for the social sciences and humanities: Research evaluation and knowledge flows[J]. Journal of the Association for Information Science and Technology, 2014, 65(8): 1627-1638. 93 Yu H Q, Xiao T T, Xu S M, et al. Who posts scientific tweets? An investigation into the productivity, locations, and identities of scientific tweeters[J]. Journal of Informetrics, 2019, 13(3): 841-855. 94 Yu H Q, Wang Y, Zhang W, et al. Who shares scholarly output on Facebook? A systematic investigation into their location, productivity and identities[J]. Journal of Information Science, 2023. DOI: 10.1177/01655515231165632. 95 邱均平, 余厚强. 基于影响力产生模型的替代计量指标分层研究[J]. 情报杂志, 2015, 34(5): 53-58. 96 Hou J H, Li H, Zhang Y. Altmetrics-based sleeping beauties: necessity or just a supplement?[J]. Scientometrics, 2023, 128(10): 5477-5506. 97 Merton R K. The Matthew effect in science, Ⅱ: cumulative advantage and the symbolism of intellectual property[J]. Isis, 1988, 79(4): 606-623. 98 吕海华, 李江. 知识扩散中的“常识化后免于引用”现象: 一项评述[J]. 数据分析与知识发现, 2022, 6(8): 12-19. 99 Li J, Ye F Y. Distinguishing sleeping beauties in science[J]. Scientometrics, 2016, 108(2): 821-828. 100 Priem J, Piwowar H, Orr R. OpenAlex: a fully-open index of scholarly works, authors, venues, institutions, and concepts[C/OL]// Proceedings of the 26th International Conference on Science and Technology Indicators, Granada, Spain, (2022-06-17). https://arxiv.org/pdf/2205.01833. 101 Wang J. Citation time window choice for research impact evaluation[J]. Scientometrics, 2013, 94(3): 851-872. 102 Zhang L, Gl?nzel W. A citation-based cross-disciplinary study on literature aging: partⅠ—the synchronous approach[J]. Scientometrics, 2017, 111(3): 1573-1589. 103 Zhang L, Gl?nzel W. A citation-based cross-disciplinary study on literature ageing: part Ⅱ—diachronous aspects[J]. Scientometrics, 2017, 111(3): 1559-1572. 104 Finardi U. On the time evolution of received citations, in different scientific fields: an empirical study[J]. Journal of Informetrics, 2014, 8(1): 13-24. 105 Parolo P D B, Pan R K, Ghosh R, et al. Attention decay in science[J]. Journal of Informetrics, 2015, 9(4): 734-745. 106 吴月辉. 推动交叉研究为科技创新增量提质[N]. 人民日报, 2024-11-25(19). 107 孙吉胜. 以学科交叉融合推动研究创新[N]. 中国社会科学报, 2024-08-01(3). 108 郭思月, 魏玉梅, 滕广青, 等. 基于专利引用的技术竞争情报分析: 以5G关键技术为例[J]. 情报理论与实践, 2019, 42(12): 1-7. 109 Waltman L, van Eck N J, van Leeuwen T N, et al. Towards a new crown indicator: some theoretical considerations[J]. Journal of Informetrics, 2011, 5(1): 37-47. |
|
|
|