|
|
Identifying Emerging Topics in Disciplines by Integrating Network Structural Features |
Yang Jinqing1, Luo Man1, Cheng Xiufeng1, Xia Lixin1, Ma Tingcan2,3 |
1.School of Information Management, Central China Normal University, Wuhan 430079 2.National Science Library (Wuhan), Chinese Academy of Sciences, Wuhan 430071 3.Hubei Key Laboratory of Big Data in Science and Technology, Wuhan 430071 |
|
|
Abstract Identifying emerging topics in disciplines is an effective method in the advancement of technological innovation and tracking trends in disciplinary development. The emergence of emerging topics in disciplines is a complex process influenced by both scientific communication and self-organizing networks, whereby the network structures of emerging topics in different disciplines acquire unique properties. Based on the common characteristics of scientific communication, this study integrated the global and local network structural features of disciplinary topics. A standard experimental dataset was generated by random matching. A multi-indicator weighted fusion method and a machine learning classification method were then used to identify emerging topics in the disciplines. The results indicate that the multi-indicator weighted fusion method is effective in identifying top-ranked influential disciplinary topics. However, the P@270 high-influence topics accounted for only 60%, which is lower than the optimal performance of the random forest classification model of 64.14%. This indicates that the machine learning classification method has a greater advantage in fitting complex processes, whereas the multi-indicator weighted fusion method is more suitable for tasks focusing on the most influential topics. The results of machine learning interpretability analysis show that a higher citation frequency, network influence, number of published papers, and higher influence of authors on journals contribute to the identification of high-influence topics, whereas a higher degree of structural mutation has a negative effect on identifying emerging topics in disciplines.
|
Received: 02 September 2024
|
|
|
|
1 杨金庆, 魏雨晗, 黄圣智, 等. 基于科技文献的新兴主题识别研究综述[J]. 情报科学, 2020, 38(8): 159-163, 177. 2 李昌, 杨中楷, 董坤. 基于多维属性动态变化特征的新兴技术识别研究[J]. 情报学报, 2022, 41(5): 463-474. 3 黄璐, 朱一鹤, 张嶷. 基于加权网络链路预测的新兴技术主题识别研究[J]. 情报学报, 2019, 38(4): 335-341. 4 Yang J Q, Wu L Y, Lyu L C. Research on scientific knowledge evolution patterns based on ego-centered fine-granularity citation network[J]. Information Processing & Management, 2024, 61(4): 103766. 5 Cataldi M, Di Caro L, Schifanella C. Personalized emerging topic detection based on a term aging model[J]. ACM Transactions on Intelligent Systems and Technology, 2014, 5(1): Article No.7. 6 郭颖, 王明星, 段炜钰. 专利的技术新兴度与其技术影响力间关系研究[J]. 科学学研究, 2022, 40(6): 1034-1043. 7 Ohniwa R L, Hibino A, Takeyasu K. Trends in research foci in life science fields over the last 30 years monitored by emerging topics[J]. Scientometrics, 2010, 85(1): 111-127. 8 Rafols I, Meyer M. Diversity and network coherence as indicators of interdisciplinarity: case studies in bionanoscience[J]. Scientometrics, 2010, 82(2): 263-287. 9 杨良斌, 周秋菊, 金碧辉. 基于文献计量的跨学科测度及实证研究[J]. 图书情报工作, 2009, 53(10): 87-90, 115. 10 张凯, 吕璐成, 韩涛, 等. “论文—专利”关联视角下的新兴技术识别研究[J]. 情报理论与实践, 2024, 47(9): 183-191. 11 许海云, 王超, 岳增慧, 等. 基于知识网络强弱关系变迁测度新兴主题的未来不确定性[J]. 情报理论与实践, 2021, 44(11): 89-98. 12 唐恒, 邱悦文. 多源信息视角下的多指标新兴技术主题识别研究——以智能网联汽车领域为例[J]. 情报杂志, 2021, 40(3): 81-88. 13 王宏, 刘沁莹, 胡玉峰, 等. 基于多源数据融合的新兴技术识别方法研究[J]. 科技进步与对策, 2025, 42(5): 21-31. 14 段庆锋, 陈红, 闫绪娴, 等. 基于知识结构突变的学科新兴主题识别研究[J]. 情报学报, 2023, 42(9): 1018-1028. 15 陈虹枢, 宋亚慧, 金茜茜, 等. 动态主题网络视角下的突破性创新主题识别: 以区块链领域为例[J]. 图书情报工作, 2022, 66(10): 45-58. 16 郭涵宁. 多元科学指标视角下的新兴研究领域识别探索[D]. 大连: 大连理工大学, 2013: 90-91. 17 Jari? I, Kne?evi?-Jari? J, Lenhardt M. Relative age of references as a tool to identify emerging research fields with an application to the field of ecology and environmental sciences[J]. Scientometrics, 2014, 100(2): 519-529. 18 Rotolo D, Hicks D, Martin B R. What is an emerging technology?[J]. Research Policy, 2015, 44(10): 1827-1843. 19 Cozzens S, Gatchair S, Kang J, et al. Emerging technologies: quantitative identification and measurement[J]. Technology Analysis & Strategic Management, 2010, 22(3): 361-376. 20 Wang Q. A bibliometric model for identifying emerging research topics[J]. Journal of the Association for Information Science and Technology, 2018, 69(2): 290-304. 21 Small H, Boyack K W, Klavans R. Identifying emerging topics in science and technology[J]. Research Policy, 2014, 43(8): 1450-1467. 22 Jang W, Park Y, Seol H. Identifying emerging technologies using expert opinions on the future: a topic modeling and fuzzy clustering approach[J]. Scientometrics, 2021, 126(8): 6505-6532. 23 王效岳, 刘自强, 白如江, 等. 基于基金项目数据的研究前沿主题探测方法[J]. 图书情报工作, 2017, 61(13): 87-98. 24 张良弛, 杨欣谊, 王伟. 金融风险管理领域新兴研究主题识别——以知网核心期刊数据为例[J]. 情报探索, 2024(6): 34-42. 25 范云满, 马建霞. 基于LDA与新兴主题特征分析的新兴主题探测研究[J]. 情报学报, 2014, 33(7): 698-711. 26 吴东雪, 沈桂兰. 一种基于LDA模型的新兴主题识别与探测方法[J]. 河南师范大学学报(自然科学版), 2024, 52(2): 72-80. 27 郝雯柯, 杨建林. 基于语义表示和动态主题模型的社科领域新兴主题预测研究[J]. 情报理论与实践, 2023, 46(2): 184-193. 28 周海炜, 吴成凤. 基于专利SAO结构和多指标评价的新兴技术识别研究——以手机芯片领域为例[J]. 情报杂志, 2022, 41(2): 86-94, 48. 29 Zhao R Y, Li D Y, Wei M K, et al. The contents and methods of knowledge network from the perspective of bibliometrics[J]. Technology Analysis & Strategic Management, 2022, 34(3): 245-257. 30 柴文越, 刘小平, 梁爽. 新兴主题识别方法研究综述[J]. 现代情报, 2023, 43(12): 164-177. 31 Shibata N, Kajikawa Y, Takeda Y, et al. Detecting emerging research fronts based on topological measures in citation networks of scientific publications[J]. Technovation, 2008, 28(11): 758-775. 32 Song K, Kim K, Lee S. Identifying promising technologies using patents: a retrospective feature analysis and a prospective needs analysis on outlier patents[J]. Technsological Forecasting and Social Change, 2018, 128: 118-132. 33 Zhao X Y, Nan D Y, Chen C M, et al. Bibliometric study on environmental, social, and governance research using CiteSpace[J]. Frontiers in Environmental Science, 2023, 10: 1087493. 34 Hu X J, Rousseau R, Chen J. Structural indicators in citation networks[J]. Scientometrics, 2012, 91(2): 451-460. 35 Hassan S U, Safder I, Akram A, et al. A novel machine-learning approach to measuring scientific knowledge flows using citation context analysis[J]. Scientometrics, 2018, 116(2): 973-996. 36 Pradhan D K, Chakraborty J, Nandi S. Applications of machine learning in analysis of citation network[C]// Proceedings of the ACM India Joint International Conference on Data Science and Management of Data. New York: ACM Press, 2019: 330-333. 37 白如江, 张亚辉, 张玉洁, 等. 基于引文—主题双重测度的交叉前沿识别研究[J]. 现代情报, 2024, 44(10): 27-40, 63. 38 葛菲, 谭宗颖. 学科领域主题新兴趋势探测方法研究——基于关键词生命周期和引文分析[J]. 情报理论与实践, 2013, 36(9): 78-82. 39 曹琨, 吴新年, 靳军宝, 等. 基于共词和node2vec表示学习的新兴技术识别方法[J]. 数据分析与知识发现, 2023, 7(9): 89-99. 40 任佳妮, 张薇, 杨阳, 等. “人工智能+医疗”新兴技术识别研究——以医疗机器人为例[J]. 情报杂志, 2021, 40(12): 45-50. 41 Huang L, Chen X, Ni X X, et al. Tracking the dynamics of co-word networks for emerging topic identification[J]. Technological Forecasting and Social Change, 2021, 170: 120944. 42 段庆锋, 陈红, 闫绪娴, 等. 基于图神经网络异构数据融合的学科新兴主题探测研究[J]. 情报杂志, 2023, 42(12): 127-133. 43 Matsumura N, Matsuo Y, Ohsawa Y, et al. Discovering emerging topics from WWW[J]. Journal of Contingencies and Crisis Management, 2002, 10(2): 73-81. 44 Definition of emerging adjective from the Oxford Advanced Learner’s Dictionary[EB/OL]. [2024-12-20]. Oxford University Press. https://www.oxfordlearnersdictionaries.com/definition/english/emerging. 45 Meaning of emerging in English[EB/OL]. [2024-12-20]. Cambridge University Press. https://dictionary.cambridge.org/us/dictionary/english/emerging. 46 Emerging definition & meaning[EB/OL]. [2024-12-20]. Merriam-Webster. https://www.merriam-webster.com/dictionary/emerging. 47 Chen Y, Amiri H, Li Z J, et al. Emerging topic detection for organizations from microblogs[C]// Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2013: 43-52. 48 Furukawa T, Mori K, Arino K, et al. Identifying the evolutionary process of emerging technologies: a chronological network analysis of World Wide Web conference sessions[J]. Technological Forecasting and Social Change, 2015, 91: 280-294. 49 Zhang S T, Han F. Identifying emerging topics in a technological domain[J]. Journal of Intelligent & Fuzzy Systems, 2016, 31(4): 2147-2157. 50 Huang J J, Peng M, Wang H, et al. A probabilistic method for emerging topic tracking in Microblog stream[J]. World Wide Web, 2017, 20(2): 325-350. 51 Nanjundaiah, Dinesh K S. Ranking of arts and humanities journals published in India: a scientometric analysis[J]. Pearl: A Journal of Library and Information Science, 2017, 11(2): 155-158. 52 Hirsch J E. An index to quantify an individual’s scientific research output[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(46): 16569-16572. 53 González-Pereira B, Guerrero-Bote V P, Moya-Anegón F. A new approach to the metric of journals’ scientific prestige: the SJR indicator[J]. Journal of Informetrics, 2010, 4(3): 379-391. 54 段庆锋, 陈红, 刘东霞, 等. 基于LSTM模型与加权链路预测的学科新兴主题成长性识别研究[J]. 现代情报, 2022, 42(9): 37-48, 142. 55 Yan E J. Topic-based Pagerank: toward a topic-level scientific evaluation[J]. Scientometrics, 2014, 100(2): 407-437. 56 Nature and biotechnology[J]. Nature Biotechnology, 2019, 37(12): 1383. 57 PubMed knowledge graph datasets[DS/OL]. [2024-12-20]. http://er.tacc.utexas.edu/datasets/ped. |
|
|
|