|
|
Perceived Values, Attitudes, and Behavioral Responses of Knowledge Creators towards Generative AI in the Context of Human-AI Competition |
Jia Mingxia1, Zhao Yuxiang2, Zhang Yan3, Zhang Xiaoyu2, Song Shijie4 |
1.School of Economics and Management, Nanjing University of Science and Technology, Nanjing 210094 2.School of Information Management, Nanjing University, Nanjing 210023 3.Research Institute for Data Management & Innovation, Nanjing University, Suzhou 215163 4.Business School, Hohai University, Nanjing 211100 |
|
|
Abstract Generative artificial intelligence (GAI) is reshaping traditional content and knowledge creation paradigms while intensifying competition between human knowledge creators and the evolving capabilities of GAI. Previous research has focused on the broad economic impacts of GAI on labor markets; however, it has largely ignored the personal experiences of creators adapting to this technology. This study addresses this gap by exploring the values, attitudes, and behaviors of creators toward GAI using a value-attitude-behavior framework and innovation diffusion theory. Through a grounded theory approach and data from interviews and online texts, the study reveals the following findings. (1) GAI leads to both substitution and complementarity effects, with creators progressing through phases from initial contact to competitive symbiosis. (2) Competitive pressure is influenced by professional, technical, and organizational factors but can be mitigated by intrinsic satisfaction and a sense of technological identity; however dependency on GAI may increase this pressure. (3) The attitude of creators toward GAI, which affects their behavioral responses, evolves over time. (4) Individual traits, organizational support, and social influence drive changes in the experiences and responses of creators. This study offers insights into the co-evolution of human knowledge creators and GAI as well as provides practical guidance for designing human-AI interactions and managing knowledge services.
|
Received: 30 August 2024
|
|
|
|
1 储节旺, 罗怡帆, 李佳轩. AIGC对信息生成方式及用户信息行为的影响[J]. 图书情报工作, 2023, 67(24): 13-23. 2 Girotra K, Meincke L, Terwiesch C, et al. Ideas are dimes a dozen: large language models for idea generation in innovation[J]. SSRN Electronic Journal, 2023. DOI: 10.2139/ssrn.4526071. 3 Vorobeva D, El Fassi Y, Costa Pinto D, et al. Thinking skills don’t protect service workers from replacement by artificial intelligence[J]. Journal of Service Research, 2022, 25(4): 601-613. 4 Noy S, Zhang W. Experimental evidence on the productivity effects of generative artificial intelligence[J]. Science, 2023, 381(6654): 187-192. 5 Strachan J W A, Albergo D, Borghini G, et al. Testing theory of mind in large language models and humans[J]. Nature Human Behaviour, 2024, 8(7): 1285-1295. 6 Woodruff A, Shelby R, Kelley P G, et al. How knowledge workers think generative AI will (not) transform their industries[C]// Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems. New York: ACM Press, 2024: Article No.641. 7 王树义, 肖骁, 倪考梦, 等. Sora的职业影响: 知识工作者应对AI核心技能替代的策略[J]. 图书馆论坛, 2024, 44(4): 177-187. 8 Yao F, Li C H, Nekipelov D, et al. Human vs. generative AI in content creation competition: symbiosis or conflict?[OL]. (2024-02-23). https://arxiv.org/pdf/2402.15467. 9 王林辉, 胡晟明, 董直庆. 人工智能技术、任务属性与职业可替代风险: 来自微观层面的经验证据[J]. 管理世界, 2022, 38(7): 60-79. 10 Yang P. Will AI art help or hurt artists?[EB/OL]. (2022-09-07) [2024-05-30]. https://creatoreconomy.so/p/will-ai-art-help-or-hurt-artists. 11 Baek T H, Kim M. Is ChatGPT scary good? How user motivations affect creepiness and trust in generative artificial intelligence[J]. Telematics and Informatics, 2023, 83: 102030. 12 Brougham D, Haar J. Technological disruption and employment: the influence on job insecurity and turnover intentions: a multi-country study[J]. Technological Forecasting and Social Change, 2020, 161: 120276. 13 Kong H Y, Yuan Y, Baruch Y, et al. Influences of artificial intelligence (AI) awareness on career competency and job burnout[J]. International Journal of Contemporary Hospitality Management, 2021, 33(2): 717-734. 14 Levy S. OpenAI’s Sora turns AI prompts into photorealistic videos[EB/OL]. (2024-02-15) [2024-05-06]. https://www.wired.com/story/openai-sora-generative-ai-video/. 15 Pavlik J V. Collaborating with ChatGPT: considering the implications of generative artificial intelligence for journalism and media education[J]. Journalism & Mass Communication Educator, 2023, 78(1): 84-93. 16 Kshetri N, Dwivedi Y K, Davenport T H, et al. Generative artificial intelligence in marketing: applications, opportunities, challenges, and research agenda[J]. International Journal of Information Management, 2024, 75: 102716. 17 Petrovska O, Clift L, Moller F, et al. Incorporating generative AI into software development education[C]// Proceedings of the 8th Conference on Computing Education Practice. New York: ACM Press, 2024: 37-40. 18 Inie N, Falk J, Tanimoto S. Designing participatory AI: creative professionals’ worries and expectations about generative AI[C]// Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems. New York: ACM Press, 2023: Article No.82. 19 Epstein Z, Hertzmann A, Investigators of Human Creativity, et al. Art and the science of generative AI[J]. Science, 2023, 380(6650): 1110-1111. 20 李舒沁, 王灏晨. 人工智能对老龄化背景下制造业劳动力的影响——来自中国的证据[J]. 科学学与科学技术管理, 2021, 42(7): 3-17. 21 Acemoglu D, Restrepo P. The race between man and machine: implications of technology for growth, factor shares, and employment[J]. American Economic Review, 2018, 108(6): 1488-1542. 22 Dwivedi Y K, Kshetri N, Hughes L, et al. “So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy[J]. International Journal of Information Management, 2023, 71: 102642. 23 S?tra H S. Generative AI: here to stay, but for good?[J]. Technology in Society, 2023, 75: 102372. 24 Ebert C, Louridas P. Generative AI for software practitioners[J]. IEEE Software, 2023, 40(4): 30-38. 25 Rafner J, Beaty R E, Kaufman J C, et al. Creativity in the age of generative AI[J]. Nature Human Behaviour, 2023, 7(11): 1836-1838. 26 Ooi K B, Tan G W H, Al-Emran M, et al. The potential of generative artificial intelligence across disciplines: perspectives and future directions[J]. Journal of Computer Information Systems, 2025, 65(1): 76-107. 27 张恒, 高中华, 徐燕. AI技术替代感对工作场所人与AI合作意愿的影响机制[J]. 软科学, 2024, 38(3): 107-114. 28 Gupta R, Nair K, Mishra M, et al. Adoption and impacts of generative artificial intelligence: theoretical underpinnings and research agenda[J]. International Journal of Information Management Data Insights, 2024, 4(1): 100232. 29 Wang F Y, Miao Q H, Li L X, et al. When does sora show: the beginning of TAO to imaginative intelligence and scenarios engineering[J]. IEEE/CAA Journal of Automatica Sinica, 2024, 11(4): 809-815. 30 徐敬宏, 张如坤. ChatGPT在编辑出版行业的应用: 机遇、挑战与对策[J]. 中国编辑, 2023(5): 116-122. 31 Baek T H, Kim M. AI robo-advisor anthropomorphism: the impact of anthropomorphic appeals and regulatory focus on investment behaviors[J]. Journal of Business Research, 2023, 164: 114039. 32 K?bis N, Mossink L D. Artificial intelligence versus Maya Angelou: experimental evidence that people cannot differentiate AI-generated from human-written poetry[J]. Computers in Human Behavior, 2021, 114: 106553. 33 Liang X D, Guo G X, Shu L L, et al. Investigating the double-edged sword effect of AI awareness on employee’s service innovative behavior[J]. Tourism Management, 2022, 92: 104564. 34 Li J, Huang J S. Dimensions of artificial intelligence anxiety based on the integrated fear acquisition theory[J]. Technology in Society, 2020, 63: 101410. 35 Chang P C, Zhang W H, Cai Q H, et al. Does AI-driven technostress promote or hinder employees’ artificial intelligence adoption intention? A moderated mediation model of affective reactions and technical self-efficacy[J]. Psychology Research and Behavior Management, 2024, 17: 413-427. 36 Bankins S, Ocampo A C, Marrone M, et al. A multilevel review of artificial intelligence in organizations: implications for organizational behavior research and practice[J]. Journal of Organizational Behavior, 2024, 45(2): 159-182. 37 Kumar A, Krishnamoorthy B, Bhattacharyya S S. Machine learning and artificial intelligence-induced technostress in organizations: a study on automation-augmentation paradox with socio-technical systems as coping mechanisms[J]. International Journal of Organizational Analysis, 2024, 32(4): 681-701. 38 Boucher J D, Smith G, Telliel Y D. Is resistance futile?: early career game developers, generative AI, and ethical skepticism[C]// Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems. New York: ACM Press, 2024: Article No.173. 39 Granulo A, Fuchs C, Puntoni S. Psychological reactions to human versus robotic job replacement[J]. Nature Human Behaviour, 2019, 3(10): 1062-1069. 40 贾明霞, 赵宇翔, 朱庆华, 等. 双系统理论视角下用户数字囤积行为的形成机理与演化路径研究[J]. 情报学报, 2024, 43(3): 339-356. 41 张洪, 江运君, 鲁耀斌, 等. 社会化媒体赋能的顾客共创体验价值: 多维度结构与多层次影响效应[J]. 管理世界, 2022, 38(2): 150-168, 10-17. 42 Boyatzis R E. Transforming qualitative information: thematic analysis and code development[M]. Thousand Oaks: Sage Publications, 1998. 43 Nam D, Lee J, Lee H. Business analytics adoption process: an innovation diffusion perspective[J]. International Journal of Information Management, 2019, 49: 411-423. 44 Grover V, Goslar M D. The initiation, adoption, and implementation of telecommunications technologies in U.S. organizations[J]. Journal of Management Information Systems, 1993, 10(1): 141-164. 45 祝琳琳, 李贺, 田聪淼, 等. 价值—态度—行为模型下面向健康产品的选择意愿影响研究[J]. 图书情报工作, 2024, 68(1): 127-136. 46 Felten E, Raj M, Seamans R. Occupational, industry, and geographic exposure to artificial intelligence: a novel dataset and its potential uses[J]. Strategic Management Journal, 2021, 42(12): 2195-2217. 47 Shi S, Zhao H L, Li H, et al. Investigating challenge and hindrance appraisals of enterprise social media use among hospitality employees: a technostress perspective[J]. Tourism Management, 2024, 100: 104814. 48 Hitsuwari J, Ueda Y, Yun W, et al. Does human-AI collaboration lead to more creative art? Aesthetic evaluation of human-made and AI-generated haiku poetry[J]. Computers in Human Behavior, 2023, 139: 107502. 49 Gaudioso F, Turel O, Galimberti C. The mediating roles of strain facets and coping strategies in translating techno-stressors into adverse job outcomes[J]. Computers in Human Behavior, 2017, 69: 189-196. 50 Kim D H, Lee H. Effects of user experience on user resistance to change to the voice user interface of an in-vehicle infotainment system: implications for platform and standards competition[J]. International Journal of Information Management, 2016, 36(4): 653-667. 51 赖丽足, 任志洪, 陶嵘. 过度“分享”负性事件与性别、心理健康和关系质量: 对共同反刍的元分析[J]. 心理科学进展, 2018, 26(1): 42-55. 52 廖觅燕, 方佳明, 杨晶晶, 等. 应对行为视角下算法推荐内容相似性对App持续使用的影响[J]. 南开管理评论, 2023, 26(3): 178-190. 53 AL-khatib A W. Drivers of generative artificial intelligence to fostering exploitative and exploratory innovation: a TOE framework[J]. Technology in Society, 2023, 75: 102403. 54 詹希旎, 李白杨. 生成式人工智能(GAI)背景下的数智可供性与认知带宽调节研究[J]. 图书与情报, 2024(1): 110-120. 55 Lin S Z, Lin J B, Luo X, et al. Juxtaposed effect of social media overload on discontinuous usage intention: the perspective of stress coping strategies[J]. Information Processing & Management, 2021, 58(1): 102419. 56 刘欣, 谢礼珊. 是喜还是忧? 服务机器人角色对员工幸福感的双路径影响机制——基于服务接待业人机互动情境的定性和定量研究[J]. 南开管理评论, 2025, 28(3): 124-135, 160. 57 Ivanov S, Soliman M, Tuomi A, et al. Drivers of generative AI adoption in higher education through the lens of the Theory of Planned Behaviour[J]. Technology in Society, 2024, 77: 102521. 58 Sharma S, Singh G, Islam N, et al. Why do SMEs adopt artificial intelligence-based chatbots?[J]. IEEE Transactions on Engineering Management, 2024, 71: 1773-1786. 59 赵宇翔, 吴大伟, 宋士杰, 等. 生活转折历程作为信息行为研究的新视角: 何以作为与何以可能?[J]. 中国图书馆学报, 2024, 50(6): 85-102. 60 周涛, 李松洮, 邓胜利. 用户信息搜寻转移意向研究: 从搜索引擎到生成式AI[J]. 图书情报工作, 2024, 68(3): 49-58. 61 Jo H. Understanding AI tool engagement: a study of ChatGPT usage and word-of-mouth among university students and office workers[J]. Telematics and Informatics, 2023, 85: 102067. 62 Fang Y H. An app a day keeps a customer connected: explicating loyalty to brands and branded applications through the lens of affordance and service-dominant logic[J]. Information & Management, 2019, 56(3): 377-391. 63 Zhou S, Yi N, Rasiah R, et al. An empirical study on the dark side of service employees’ AI awareness: behavioral responses, emotional mechanisms, and mitigating factors[J]. Journal of Retailing and Consumer Services, 2024, 79: 103869. 64 Hong D Y, Cho C H. Factors affecting innovation resistance of smartphone AI voice assistants[J]. International Journal of Human-Computer Interaction, 2023, 39(13): 2557-2572. 65 郭亚军, 刘振阳, 郭一若, 等. AIGC大学生用户信息需求研究——以ChatGPT为例[J]. 情报科学, 2024, 42(8): 34-44. 66 张敏, 孟蝶, 张艳. “使用-满足”分析框架下社交媒体用户持续使用行为的概念模型研究[J]. 信息资源管理学报, 2020, 10(1): 92-101. 67 Tang P M, Koopman J, Yam K C, et al. The self-regulatory consequences of dependence on intelligent machines at work: evidence from field and experimental studies[J]. Human Resource Management, 2023, 62(5): 721-744. 68 Carter M, Grover V. Me, my self, and I(T): conceptualizing information technology identity and its implications[J]. MIS Quarterly, 2015, 39(4): 931-958. 69 Delgosha M S, Hajiheydari N. How human users engage with consumer robots? A dual model of psychological ownership and trust to explain post-adoption behaviours[J]. Computers in Human Behavior, 2021, 117: 106660. 70 Wang B C, Rau P L P, Yuan T Y. Measuring user competence in using artificial intelligence: validity and reliability of artificial intelligence literacy scale[J]. Behaviour & Information Technology, 2023, 42(9): 1324-1337. 71 Yin M, Jiang S Y, Niu X Y. Can AI really help? The double-edged sword effect of AI assistant on employees’ innovation behavior[J]. Computers in Human Behavior, 2024, 150: 107987. 72 李君君, 文娟, 徐乔丹, 等. 持续使用还是消极使用: 矛盾态度视角下社交媒体用户动态行为研究[J]. 情报科学, 2024, 42(9): 100-111. |
|
|
|