|
|
Quantitative Evaluation and Optimization of GAI Policy and Regulation Texts' Focus on Information Governance |
Wang Xu1, Liu Binbin1, Qiu Junping2 |
1.School of Economics and Management, Yanshan University, Qinhuangdao 066004 2.Chinese Academy of Science and Education Evaluation, Hangzhou Dianzi University, Hangzhou 310018 |
|
|
Abstract In the digital and intelligent era, generative artificial intelligence (GAI) has been garnering worldwide attention. The emergence of large language models has triggered many chaotic phenomena in the information ecology. The quantitative evaluation and optimization of GAI policies and regulations have practical significance in promoting the study of GAI governance rationalization, facilitating the enhancement of the level of social risk management and the effectiveness of information governance, and advancing national cyberspace governance. First, this study analyzes the information governance dilemma triggered by GAI content. Second, it employs the policy modeling consistency (PMC) index model method and combines it with the MatLab tool to quantitatively evaluate and analyze the texts of 14 global GAI policies and regulations. The findings reveal that the overall level of consistency of policies and regulations is relatively good, but there are still problems with unclear types of services in legislative industries and areas, restricted application functions of trustworthiness and controllability, and solidification of the scope of technical safeguard governance. Accordingly, this study proposes four optimization dimensions—technology optimization, risk assessment, application deployment, and international policy and regulation integration. Owing to the information governance dilemma triggered by GAI, the study refines agile governance into three core dimensions—intelligent services, trusted applications, and technical security—which serve as a yardstick for evaluating GAI policies and regulations. It constructs an optimization framework of flexible solutions and scenario-based hierarchical governance modes with both soft and hard methods, and proposes an optimization proposal of GAI policies and regulations oriented to information governance.
|
Received: 11 March 2024
|
|
|
|
1 习近平. 发展新质生产力是推动高质量发展的内在要求和重要着力点[J]. 求是, 2024(11): 4-8. 2 米加宁. 生成式治理: 大模型时代的治理新范式[J]. 中国社会科学, 2024(10): 119-139, 207. 3 中共中央关于进一步全面深化改革 推进中国式现代化的决定[EB/OL]. (2024-07-21) [2024-07-23]. https://www.gov.cn/zhengce/ 202407/content_6963770.htm. 4 OECD AI incidents monitor (AIM)[EB/OL]. [2024-06-29]. https://oecd.ai/en/incidents. 5 Stahl B C, Eke D. The ethics of ChatGPT - exploring the ethical issues of an emerging technology[J]. International Journal of Information Management, 2024, 74: 102700. 6 OECD AI principles overview[EB/OL]. [2023-10-31]. https://oecd.ai/en/ai-principles. 7 Farmer S, Morton S, Booth M. EU passes comprehensive law on artificial intelligence, heralding a new era of AI regulation[EB/OL]. (2024-03-13) [2024-07-18]. https://www.internetandtechnologylaw.com/eu-ai-act-artificial-intelligence-regulation/. 8 Federal Register. AI accountability policy request for comment[EB/OL]. (2023-04-13) [2023-11-01]. https://www.federalregister.gov/documents/2023/04/13/2023-07776/ai-accountability-policy-request-for-comment. 9 Association for Computing Machinery. ACM technology policy council releases principles for generative AI technologies[EB/OL]. (2023-07-11) [2023-11-01]. https://www.acm.org/articles/bulletins/2023/july/tpc-principles-generative-ai. 10 Greco E, Marconi F, Maremonti F. The transformative potential of AI and the role of G7[J]. Documenti IAI, 2024(3): 1-11. 11 王天恩. 人工智能通用化及其实现途径[J]. 中国社会科学, 2024(3): 105-124, 205. 12 Afjal M. ChatGPT and the AI revolution: a comprehensive investigation of its multidimensional impact and potential[J]. Library Hi Tech, 2023. DOI: 10.1108/LHT-07-2023-0322. 13 Santandreu-Calonge D, Medina-Aguerrebere P, Hultberg P, et al. Can ChatGPT improve communication in hospitals?[J]. Profesional de la Información, 2023, 32(2): e320219. 14 Liu S R, Wright A P, Patterson B L, et al. Using AI-generated suggestions from ChatGPT to optimize clinical decision support[J]. Journal of the American Medical Informatics Association, 2023, 30(7): 1237-1245. 15 Lehr S A, Caliskan A, Liyanage S, et al. ChatGPT as research scientist: probing GPT’s capabilities as a research librarian, research ethicist, data generator, and data predictor[J]. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121(35): e2404328121. 16 Lund B D, Wang T, Mannuru N R, et al. ChatGPT and a new academic reality: artificial intelligence-written research papers and the ethics of the large language models in scholarly publishing[J]. Journal of the Association for Information Science and Technology, 2023, 74(5): 570-581. 17 Truong V T, Le H D, Le L B. Trust-free blockchain framework for AI-generated content trading and management in metaverse[J]. IEEE Access, 2024, 12: 41815-41828. 18 Robles Carrillo M. Artificial intelligence: from ethics to law[J]. Telecommunications Policy, 2020, 44(6): 101937. 19 García-Vigil J L. Reflections around ethics, human intelligence and artificial intelligence[J]. Gaceta Medica de Mexico, 2021, 157(3): 298-301. 20 刘宪权. 生成式人工智能对数据法益刑法保护体系的影响[J]. 中国刑事法杂志, 2023(4): 20-34. 21 Dwivedi Y K, Kshetri N, Hughes L, et al. “So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy[J]. International Journal of Information Management, 2023, 71: 102642. 22 Hamed A A, Zachara-Szymanska M, Wu X D. Safeguarding authenticity for mitigating the harms of generative AI: issues, research agenda, and policies for detection, fact-checking, and ethical AI[J]. iScience, 2024, 27(2): 108782. 23 Chesterman S. Good models borrow, great models steal: intellectual property rights and generative AI[J]. Policy and Society, 2024: puae006. 24 Holden Thorp H. ChatGPT is fun, but not an author[J]. Science, 2023, 379(6630): 313. 25 Gregor S. Responsible artificial intelligence and journal publishing[J]. Journal of the Association for Information Systems, 2024, 25(1): 48-60. 26 Hacker P. Sustainable AI regulation[J]. Common Market Law Review, 2024, 61(2): 345-386. 27 邓建鹏, 马文洁. 人工智能“逐案设法”治理模式的优化[J]. 南京社会科学, 2024(6): 55-64, 75. 28 Qumer A. Defining an integrated agile governance for large agile software development environments[C]// Proceedings of the 8th International Conference on Agile Processes in Software Engineering and Extreme Programming. Heidelberg: Springer, 2007: 157-160. 29 薛澜, 赵静. 走向敏捷治理: 新兴产业发展与监管模式探究[J]. 中国行政管理, 2019(8): 28-34. 30 张惠彬, 何易平. 平台算法监管的困境与出路——基于美国算法监管模式的研究[J]. 科学学研究, 2024, 42(7): 1419-1428, 1448. 31 中办国办印发 关于加强科技伦理治理的意见[N]. 人民日报, 2022-03-21(1). 32 赵星, 陆绮雯. 元宇宙之治: 未来数智世界的敏捷治理前瞻[J]. 中国图书馆学报, 2022, 48(1): 52-61. 33 杨杰, 吴琳伟, 邓三鸿. 颠覆性技术视角下科技伦理的敏捷治理框架探讨[J]. 中国科学基金, 2023, 37(3): 378-386. 34 陈锐, 江奕辉. 生成式AI的治理研究: 以ChatGPT为例[J]. 科学学研究, 2024, 42(1): 21-30. 35 Donaldson A, Walker P. Information governance—a view from the NHS[J]. International Journal of Medical Informatics, 2004, 73(3): 281-284. 36 Kooper M N, Maes R, Lindgreen E E O R. On the governance of information: introducing a new concept of governance to support the management of information[J]. International Journal of Information Management, 2011, 31(3): 195-200. 37 何宇华, 李霞. 生成式人工智能虚假信息治理的新挑战及应对策略——基于敏捷治理的视角[J]. 治理研究, 2024, 40(4): 142-156, 160. 38 钱力, 刘细文, 张智雄, 等. 科技情报智慧数据: 方法、体系与应用[J]. 情报理论与实践, 2024, 47(1): 12-21. 39 蔡子凡, 蔚海燕. 人工智能生成内容(AIGC)的演进历程及其图书馆智慧服务应用场景[J]. 图书馆杂志, 2023, 42(4): 34-43, 135-136. 40 安小米, 徐明月. 人工智能场景下的“透明”概念研究: 基于国际标准术语定义的内容分析[J]. 信息资源管理学报, 2024, 14(3): 42-55. 41 张永忠. 论人工智能透明度原则的法治化实现[J]. 政法论丛, 2024(2): 124-137. 42 支振锋. 生成式人工智能大模型的信息内容治理[J]. 政法论坛, 2023, 41(4): 34-48. 43 王旭, 刘斌斌, 薛宇菲. 我国个人信息保护政策法律文本量化评价研究——基于PMC指数模型和中欧法律对比分析[J/OL]. 重庆大学学报(社会科学版), (2024-06-13) [2024-07-25]. https://kns.cnki.net/kcms/detail/50.1023.C.20240612.1559.002.html. 44 朱禹, 陈关泽, 陆泳溶, 等. 生成式人工智能治理行动框架: 基于AIGC事故报道文本的内容分析[J]. 图书情报知识, 2023, 40(4): 41-51. 45 Hacker P, Engel A, Mauer M. Regulating ChatGPT and other large generative AI models[C]// Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency. New York: ACM Press, 2023: 1112-1123. 46 Wang X, Feng X, Zhao J Y. Research on influencing factors and governance of disinformation dissemination on science and technology topics: an empirical study on the topic of “metaverse”[J]. Internet Research, 2023, 33(5): 1802-1827. 47 Monteith S, Glenn T, Geddes J R, et al. Artificial intelligence and increasing misinformation[J]. The British Journal of Psychiatry, 2024, 224(2): 33-35. 48 Ordu?a-Malea E, Cabezas-Clavijo á. ChatGPT and the potential growing of ghost bibliographic references[J]. Scientometrics, 2023, 128(9): 5351-5355. 49 Why Nature will not allow the use of generative AI in images and video[J]. Nature, 2023, 618(7964): 214. 50 Epstein Z, Hertzmann A, Investigators of Human Creativity. Art and the science of generative AI[J]. Science, 2023, 380(6650): 1110-1111. 51 Chan C K Y. A comprehensive AI policy education framework for university teaching and learning[J]. International Journal of Educational Technology in Higher Education, 2023, 20(1): 38. 52 Camilleri M A. Artificial intelligence governance: Ethical considerations and implications for social responsibility[J]. Expert Systems, 2024, 41(7): e13406. 53 Yenduri G, Ramalingam M, Selvi G C, et al. GPT (generative pre-trained transformer)—a comprehensive review on enabling technologies, potential applications, emerging challenges, and future directions[J]. IEEE Access, 2024, 12: 54608-54649. 54 王春福. 试论政策评价及其标准[J]. 学术交流, 1993(3): 1-4. 55 孙瑞英, 陈宜泓. 基于PMC指数模型的我国公共数据开放政策评价研究[J]. 情报理论与实践, 2023, 46(8): 33-42. 56 马海群, 李敏. 基于熵权TOPSIS法的知识产权保护政策评价研究[J]. 数字图书馆论坛, 2023, 19(8): 60-67. 57 朱富成, 刘永. 利用政策关联度指标进行学术影响力研究——以疫情防控档案政策关联度为例[J]. 图书情报工作, 2023, 67(14): 62-72. 58 孙瑞英, 李杰茹. 我国政府数据开放平台个人隐私保护政策评价研究[J]. 图书情报工作, 2022, 66(12): 3-16. 59 Ruiz Estrada M A. Policy modeling: definition, classification and evaluation[J]. Journal of Policy Modeling, 2011, 33(4): 523-536. 60 朱新超, 姜景, 陈悦. 基于政策建模一致性(PMC)指数模型的中美人工智能政策比较研究[J]. 科技管理研究, 2024, 44(8): 20-30. 61 邱丹萍. 新一代信息技术产业政策量化评价研究[J/OL]. 情报科学, (2024-06-28) [2024-07-10]. https://kns.cnki.net/kcms/detail/ 22.1264.g2.20240627.1138.004.html. 62 王彦雨, 李正风, 高芳. 欧美人工智能治理模式比较研究[J]. 科学学研究, 2024, 42(3): 460-468, 491. 63 Nestor M, Loredana F, Raymond P, et al. The 2024 AI index report[R]. Stanford: Stanford University, 2024. 64 童云峰. 生成式人工智能技术风险的内部管理型规制[J]. 科学学研究, 2024, 42(10): 2038-2046. 65 程乐. 生成式人工智能治理的态势、挑战与展望[J]. 人民论坛, 2024(2): 76-81. 66 af Malmborg F, Trondal J. Discursive framing and organizational venues: mechanisms of artificial intelligence policy adoption[J]. International Review of Administrative Sciences, 2023, 89(1): 39-58. 67 张春春, 孙瑞英. 如何走出AIGC的“科林格里奇困境”: 全流程动态数据合规治理[J]. 图书情报知识, 2024, 41(2): 39-49, 66. 68 贾开, 俞晗之, 薛澜. 人工智能全球治理新阶段的特征、赤字与改革方向[J]. 国际论坛, 2024, 26(3): 62-78, 157-158. 69 张凌寒, 于琳. 从传统治理到敏捷治理: 生成式人工智能的治理范式革新[J]. 电子政务, 2023(9): 2-13. 70 Roberts H, Hine E, Taddeo M, et al. Global AI governance: barriers and pathways forward[J]. International Affairs, 2024, 100(3): 1275-1286. 71 Wang K L, Dong K, Wu J C, et al. Patterns of artificial intelligence policies in China: a nationwide perspective[J]. Library Hi Tech, 2023. DOI: 10.1108/LHT-04-2022-0168. 72 Azab A, Khasawneh M, Alrabaee S, et al. Network traffic classification: techniques, datasets, and challenges[J]. Digital Communications and Networks, 2024, 10(3): 676-692. 73 Hemphill T A. The innovation governance dilemma: alternatives to the precautionary principle[J]. Technology in Society, 2020, 63: 101381. 74 薛澜, 贾开, 赵静. 人工智能敏捷治理实践: 分类监管思路与政策工具箱构建[J]. 中国行政管理, 2024, 40(3): 99-110. 75 王秋艳, 万国华. 生成式人工智能的双重法律规制理路[J]. 中国特色社会主义研究, 2023(4): 72-84. 76 龙龙. 敏捷治理理念下人工智能软法之治的问题与对策[J]. 江汉论坛, 2024(5): 128-134. 77 Dwivedi Y K, Hughes L, Ismagilova E, et al. Artificial intelligence (AI): multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy[J]. International Journal of Information Management, 2021, 57: 101994. 78 曾雄, 梁正, 张辉. 人工智能软法治理的优化进路: 由软法先行到软法与硬法协同[J]. 电子政务, 2024(6): 96-107. 79 白文静. 人工智能参与数字政府建设的范式革新——基于行政领域人工智能通用大模型(GovGPT)的交互性敏捷治理[J]. 西北民族大学学报(哲学社会科学版), 2024(3): 91-102. 80 朝乐门. 人工智能治理框架及其人文社会科学研究问题分析[J]. 情报资料工作, 2022, 43(5): 6-15. |
|
|
|