|
|
|
| Multi-dimensional Coupling and Symbiotic Evolution Mechanism of Science and Technology in Emerging Industrial Fields |
| Ba Zhichao1,2,3, Meng Kai1, Zhang Yujie1, Xia Yikun1,2,3 |
1.Research Institute for Data Management & Innovation, Nanjing University, Suzhou 215163 2.School of Information Management, Nanjing University, Nanjing 210023 3.Laboratory of Data Intelligence and Interdisciplinary Innovation, Nanjing University, Nanjing 210023 |
|
|
|
|
Abstract The strategic layout of emerging industries often necessitates synergies between fundamental scientific research and technological innovation. Exploring the coupling and symbiosis between science and technology (S&T) is a pivotal avenue for discovering these synergies. To address the current challenges of low technological synergy and ambiguous pathways, this article adopts a parallel observation perspective on S&T coupling. It focuses on the symbiotic evolution process and collaborative innovation mechanisms between S&T in emerging industries. By shifting the scientific-technological correlation from a “one-way influence” paradigm to a “multi-dimensional coupling” framework, we delve into multi-dimensional coupling encompassing “element-transformation-structure.” This analysis examines structural coupling, symbiotic evolution (coupling), and dynamic coupling between S&T, offering an in-depth understanding of the iterative and progressive mechanisms underlying their interactions. Utilizing the Information and Communications Technology (ICT) industry as a case, we aim to validate the feasibility and effectiveness of exploring the coupling phenomenon of S&T systems. This approach offers insights into the structural and evolutionary characteristics of industries beyond traditional 1-mode networks, elucidating the mutual transformation processes and collaborative innovation mechanisms between scientific knowledge and technological practices within specific industries.
|
|
Received: 21 March 2025
|
|
|
|
1 胥彦玲, 肖雯. 构建“四链”深度融合的开放创新生态[N]. 光明日报, 2022-12-01(16). 2 巴志超, 孟凯, 张玉洁, 等. 一种科学与技术要素-转化-结构多维耦合计算方法: CN202411076008.6[P]. 2024-09-03. 3 巴志超, 孟凯, 刘蕾蕾, 等. 一种基于知识网络多维耦合的科学-技术关联探测方法: CN202410104502.2[P]. 2024-03-01. 4 Ba Z C, Meng K, Ma Y X, et al. Discovering technological opportunities by identifying dynamic structure-coupling patterns and lead-lag distance between science and technology[J]. Technological Forecasting and Social Change, 2024, 200: 123147. 5 袁纯清. 共生理论——兼论小型经济[M]. 北京: 经济科学出版社, 1998. 6 胡浩, 李子彪, 胡宝民. 区域创新系统多创新极共生演化动力模型[J]. 管理科学学报, 2011, 14(10): 85-94. 7 Taalbi J. Evolution and structure of technological systems-an innovation output network[J]. Research Policy, 2020, 49(8): 104010. 8 Hiltunen T, Becks L. Consumer co-evolution as an important component of the eco-evolutionary feedback[J]. Nature Communications, 2014, 5: 5226. 9 Lu J L, Wang L Z, Fang Y, et al. Mining strong symbiotic patterns hidden in spatial prevalent co-location patterns[J]. Knowledge-Based Systems, 2018, 146: 190-202. 10 朱卫东, 张超, 吴勇, 等. 员工与股东的劳资共生演化动力模型研究——基于增加价值与利益相关者理论[J]. 管理科学学报, 2019, 22(2): 112-126. 11 储节旺, 安怡然, 李佳轩. 面向关键核心技术攻关的知识生态系统: 融合、演化、协同与冲击[J]. 情报学报, 2023, 42(3): 255-267. 12 张小燕. 我国区域创新生态系统共生性研究[D]. 哈尔滨: 哈尔滨工程大学, 2020. 13 Zhang Y, Chen K H, Fu X L. Scientific effects of triple helix interactions among research institutes, industries and universities[J]. Technovation, 2019, 86/87: 33-47. 14 Lee R, Lee J H, Garrett T C. Synergy effects of innovation on firm performance[J]. Journal of Business Research, 2019, 99: 507-515. 15 李树文, 罗瑾琏, 胡文安. 从价值交易走向价值共创: 创新型企业的价值转型过程研究[J]. 管理世界, 2022, 38(3): 125-144. 16 张影, 高长元, 王京. 跨界创新联盟生态系统共生演化模型及实证研究[J]. 中国管理科学, 2022, 30(6): 200-212. 17 Zeng Y C, Dong P W, Shi Y Y, et al. Analyzing the co-evolution of green technology diffusion and consumers’ pro-environmental attitudes: an agent-based model[J]. Journal of Cleaner Production, 2020, 256: 120384. 18 Meng K, Ba Z C, Ma Y X, et al. A network coupling approach to detecting hierarchical linkages between science and technology[J]. Journal of the Association for Information Science and Technology, 2024, 75(2): 167-187. 19 谢建辉, 李勇军, 梁樑, 等. 随机环境下的多投入多产出生产前沿面估计[J]. 管理科学学报, 2018, 21(11): 50-60. 20 杜运周, 刘秋辰, 陈凯薇, 等. 营商环境生态、全要素生产率与城市高质量发展的多元模式——基于复杂系统观的组态分析[J]. 管理世界, 2022, 38(9): 127-145. 21 卢雨婷, 周小亮. 科学与技术耦合效果评价——科技互补效应和成本效应分析[J]. 科技进步与对策, 2021, 38(10): 18-27. 22 刘向, 马费成. 科学知识网络的演化与动力——基于科学引证网络的分析[J]. 管理科学学报, 2012, 15(1): 87-94. 23 单子丹, 高长元, 李小雯. 高技术知识转移的耦合体系与网络变迁: 基于虚拟产业集群的仿真分析[J]. 管理评论, 2015, 27(9): 29-39. 24 Wen H W, Lee C C, Song Z Y. Digitalization and environment: how does ICT affect enterprise environmental performance?[J]. Environmental Science and Pollution Research, 2021, 28(39): 54826-54841. 25 Chen K H, Kou M T, Fu X L. Evaluation of multi-period regional R&D efficiency: an application of dynamic DEA to China’s regional R&D systems[J]. Omega, 2018, 74: 103-114. 26 Cheung C K, Ma S K. Coupling social solidarity and social harmony in Hong Kong[J]. Social Indicators Research, 2011, 103(1): 145-167. 27 Wu Q, Cao Y, Fang X Q, et al. A systematic coupling analysis framework and multi-stage interaction mechanism between urban land use efficiency and ecological carrying capacity[J]. Science of the Total Environment, 2022, 853: 158444. 28 Chen X, Ye P F, Huang L, et al. Exploring science-technology linkages: a deep learning-empowered solution[J]. Information Processing & Management, 2023, 60(2): 103255. 29 国务院关于加快培育和发展战略性新兴产业的决定[EB/OL]. (2010-10-18) [2024-10-07]. https://www.gov.cn/zhengce/zhengceku/2010-10/18/content_1274.htm. 30 工业和信息化部. “十四五”信息通信行业发展规划[EB/OL]. (2021-11-01) [2024-10-07]. https://www.miit.gov.cn/cms_files/filemanager/1226211233/attach/202111/8091d85ce29a49c683ee187b1976d6e1.pdf. 31 王超, 许海云, 齐砚翠, 等. 知识网络视角下科学、技术、产业间创新驱动关系识别方法研究[J]. 情报学报, 2024, 43(1): 10-24. 32 陈果, 王盼停, 王曰芬. 文献集规模对科技领域情报分析的影响: 多种任务场景下的实证分析[J]. 情报学报, 2021, 40(8): 869-878. |
|
|
|