|
|
|
| Identification of Opportunities for Technological Fusion: Comprehensive Consideration of Relational and Structural Embedding |
| Zhao Youlin1,2, Gu Chenya1, Wang Jiajie2,3, Wang Yuemei1, Shi Yanqing4, Feng Li5 |
1.Business School, Hohai University, Nanjing 211100 2.School of Information Management, Nanjing University, Nanjing 210023 3.Laboratory of Data Intelligence and Interdisciplinary Innovation, Nanjing University, Nanjing 210023 4.College of Information Management, Nanjing Agricultural University, Nanjing 210095 5.Hohai University Library, Nanjing 211100 |
|
|
|
|
Abstract With the rapid development of technology and deepening of disciplinary integration, the technological innovations increasingly rely on the deep integration of interdisciplinary knowledge. In the existing research on identification of opportunities for technology integration, fields with high levels of technology integration have not been extensively investigated, and the adverse effects of weak relationships on knowledge fusion innovation in this field have not been considered. There is also a lack of consideration on the role of nodes in different network locations in technology fusion innovation. In this regard, this article introduces the theory of network embeddedness to construct a model that identifies opportunities for technology integration from fields with high levels of technology integration. The relationship embedding in the network embeddedness theory focuses on the strong and weak characteristics of relationships, while the structural embedding emphasizes the positional characteristics of nodes. First, the model introduced in this paper constructs a technology fusion path based on relationship embedding, dividing citation relationships into four quadrants with different strong and weak characteristics, combining them pairwise, and constructing knowledge networks separately. The knowledge network with a high technology fusion potential is used as an existing technology fusion path. Second, based on this technology fusion path and integration opportunity of structural embedding recognition technology, knowledge combinations that have not yet been connected and cross domain are identified through the medium of structural holes and central position nodes, and their fusion value is calculated to screen out technology fusion opportunities. An empirical evidence in the field of hyperspectral imaging with diverse fusion features shows that this model has a higher recognition accuracy and better depth and breadth of recognition content, which helps grasp the direction of future technological fusion.
|
|
Received: 01 November 2024
|
|
|
|
1 Schwartz P. Technological innovation opportunities[J]. Computers and People, 1974, 23(5): 33-33. 2 Olsson O. Technological opportunity and growth[J]. Journal of Economic Growth, 2005, 10(1): 31-57. 3 Jeong S, Lee S. What drives technology convergence? Exploring the influence of technological and resource allocation contexts[J]. Journal of Engineering and Technology Management, 2015, 36: 78-96. 4 Morel P, Bier H. Disruptive technologies: the convergence of new paradigms in architecture[M]. Cham: Springer, 2023 5 Kodama F. Technology fusion and the new R&D[J]. Harvard Business Review, 1992: 70-78. 6 Wang X Z, Zhao Y J, Liu R, et al. Knowledge-transfer analysis based on co-citation clustering[J]. Scientometrics, 2013, 97(3): 859-869. 7 Obstfeld D. Social networks, the tertius iungens orientation, and involvement in innovation[J]. Administrative Science Quarterly, 2005, 50(1): 100-130. 8 Gao Q, Jiang M. Exploring technology fusion by combining latent Dirichlet allocation with Doc2vec: a case of digital medicine and machine learning[J]. Scientometrics, 2024, 129(7): 4043-4070. 9 Karvonen M, K?ssi T. Patent citations as a tool for analysing the early stages of convergence[J]. Technological Forecasting and Social Change, 2013, 80(6): 1094-1107. 10 王艳, 苗红, 李欣, 等. 知识基因视角下的技术融合机会发现研究[J]. 科学学与科学技术管理, 2021, 42(7): 18-34. 11 任海英, 赵育慧, 于立婷. 基于知识网络的科学研究机会发现的机理和应用[J]. 情报理论与实践, 2018, 41(11): 89-95. 12 Zhou Y, Dong F, Kong D J, et al. Unfolding the convergence process of scientific knowledge for the early identification of emerging technologies[J]. Technological Forecasting and Social Change, 2019, 144: 205-220. 13 Lee D, Yoo C. Predicting a promising fusion technology in geoscience and mineral resources engineering using Korean patent data[J]. Geosystem Engineering, 2014, 17(1): 34-42. 14 Lee W S, Han E J, Sohn S Y. Predicting the pattern of technology convergence using big-data technology on large-scale triadic patents[J]. Technological Forecasting & Social Change, 2015, 100: 317-329. 15 Park I, Yoon B. Technological opportunity discovery for technological convergence based on the prediction of technology knowledge flow in a citation network[J]. Journal of Informetrics, 2018, 12(4): 1199-1222. 16 娄岩, 杨培培, 黄鲁成, 等. 基于专利的技术融合测度方法——以信息技术与电动汽车技术的融合为例[J]. 现代情报, 2017, 37(8): 142-153. 17 韩燕, 彭爱东. 基于技术形成三要素的技术机会识别研究——以医疗服务机器人领域技术为例[J]. 情报理论与实践, 2020, 43(5): 156-162. 18 Polanyi K. The great transformation: the political and economic origins of our time[M]. Boston: Beacon Press, 1944. 19 Granovetter M. Economic action and social structure: the problem of embeddedness[J]. Journal of Economic Sociology, 2002, 3(3): 44-58. 20 Granovetter M S. The strength of weak ties[J]. American Journal of Sociology, 1973, 78(6): 1360-1380. 21 Genius S K. Published literature and diffusion of medical innovation: exploring innovation generation[J]. Canadian Journal of Information and Library Science, 2005, 29(1): 27-54. 22 林润辉. 网络组织与企业高成长[M]. 天津: 南开大学出版社, 2004. 23 边燕杰, 丘海雄. 企业的社会资本及其功效[J]. 中国社会科学, 2000(2): 87-99, 207. 24 Moran P. Structural vs. relational embeddedness: social capital and managerial performance[J]. Strategic Management Journal, 2005, 26(12): 1129-1151. 25 Koka B R, Prescott J E. Designing alliance networks: the influence of network position, environmental change, and strategy on firm performance[J]. Strategic Management Journal, 2008, 29(6): 639-661. 26 Burt R S. Structural holes: the social structure of competition[M]. Cambridge: Harvard University Press, 1992. 27 叶琴, 曾刚. 不同知识基础产业创新网络与创新绩效比较——以中国生物医药产业与节能环保产业为例[J]. 地理科学, 2020, 40(8): 1235-1244. 28 Nowiński W, Rialp A. The impact of social networks on perceptions of international opportunities[J]. Journal of Small Business Management, 2016, 54(2): 445-461. 29 Grunwald R, Kieser A. Learning to reduce interorganizational learning: an analysis of architectural product innovation in strategic alliances[J]. Journal of Product Innovation Management, 2007, 24(4): 369-391. 30 Uzzi B. Social structure and competition in interfirm networks: the paradox of embeddedness[J]. Administrative Science Quarterly, 1997, 42(1): 35-67. 31 Burt R S. The network structure of social capital[J]. Research in Organizational Behavior, 2000, 22: 345-423. 32 马荣康. 基于马尔可夫链的中外专利布局演变特征比较分析——IPC小类层面的证据[J]. 科学学与科学技术管理, 2018, 39(9): 73-86. 33 Aharonson B S, Schilling M A. Mapping the technological landscape: measuring technology distance, technological footprints, and technology evolution[J]. Research Policy, 2016, 45(1): 81-96. 34 向姝璇, 李睿. 基于专利文献整体相似度计算的竞争对手发现——以5G领域为例[J]. 情报理论与实践, 2021, 44(5): 100-105. 35 Devlin J, Chang M W, Lee K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: Association for Computational Linguistics, 2019: 4171-4186. 36 Xiong Y J, Feng Y K, Wu H, et al. Fusing label embedding into BERT: an efficient improvement for text classification[C]// Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. Stroudsburg: Association for Computational Linguistics, 2021: 1743-1750. 37 Jenks G F. The data model concept in statistical mapping[M]// International Yearbook of Cartography. London: George Philip and Son Limited, 1967: 186-190. 38 MacQueen J. Some methods for classification and analysis of multivariate observations[C]// Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability. Berkeley: University of California Press, 1967: 281-297. 39 翟东升, 蔡力伟, 张杰, 等. 基于专利的技术融合创新轨道识别模型研究——以云计算技术为例[J]. 情报学报, 2015, 34(4): 352-360. 40 Borgatti S P, Mehra A, Brass D J, et al. Network analysis in the social sciences[J]. Science, 2009, 323(5916): 892-895. 41 刘军. 整体网分析: UCINET软件实用指南[M]. 上海: 格致出版社, 上海人民出版社, 2009: 126-136. 42 Freeman L C. A set of measures of centrality based on betweenness[J]. Sociometry, 1977, 40(1): 35-41. 43 Duysters G, Hagedoorn J. Technological convergence in the IT industry: the role of strategic technology alliances and technological competencies[J]. International Journal of the Economics of Business, 1998, 5(3): 355-368. 44 Borés C, Saurina C, Torres R. Technological convergence: a strategic perspective[J]. Technovation, 2003, 23(1): 1-13. 45 慎金花, 闫倩倩, 孙乔宣, 等. 基于专利数据挖掘的技术融合识别与技术机会预测研究——以电动汽车产业为例[J]. 图书馆杂志, 2019, 38(10): 95-106. 46 Caviggioli F. Technology fusion: identification and analysis of the drivers of technology convergence using patent data[J]. Technovation, 2016, 55/56: 22-32. 47 Levenson R M, Hoyt C C. Spectral imaging and microscopy[J]. American Laboratory, 2000, 32(22): 26-33. 48 Mao J H, Zhao H Q, Xie Y, et al. Fast and nondestructive proximate analysis of coal from hyperspectral images with machine learning and combined spectra-texture features[J]. Applied Sciences, 2024, 14(17): 7920. 49 王宏起, 夏凡, 王珊珊. 新兴产业技术融合方向预测: 方法及实证[J]. 科学学研究, 2020, 38(6): 1009-1017, 1075. |
|
|
|