|
|
|
| Analysis of Textual Attributes of Scientific Tweets and Their Impact on the Cascading Evolution Trends of Scientific Papers |
| Cao Renmeng1,2, Xu Xiaoke1,2, Wang Xianwen3 |
1.Computational Communication Research Center, Beijing Normal University, Zhuhai 519087 2.School of Journalism and Communication, Beijing Normal University, Beijing 100875 3.WISE Lab, Institute of Science of Science and S&T Management, School of Public Administration and Policy, Dalian University of Technology, Dalian 116024 |
|
|
|
|
Abstract Scientific tweets are an important medium for the diffusion of scientific papers on social media. The understanding of the impact of textual attributes of scientific tweets on the diffusion effects of scientific papers helps science communicators in optimizing their strategies, broadening the reach of scientific information, and facilitating academic communication and public engagement. In this study, based on a dataset of over 50,000 papers and 400,000 scientific tweets, we explore the influence of various textual attributes on the cascade propagation dynamics of scientific tweets across three dimensions: tweet content, multimedia elements, and emojis. The results indicate that the use of the highlights of the paper as tweet content, along with incorporation of visual elements such as images, videos, and emojis into the tweets, can significantly enhance the diffusion scope of scientific papers. This effect not only is evident in the initial stages of propagation but also becomes more pronounced in subsequent stages, resulting in a “rich-get-richer” trend, i.e., Matthew effect in cascade diffusion. By introducing a computational communication perspective into altmetrics research, this study provides a deeper and more comprehensive understanding of the diffusion processes and patterns of scientific papers on social media, and thereby uncovers the mechanisms that drive the diffusion of scientific papers.
|
|
Received: 01 January 2025
|
|
|
|
1 Bik H M, Goldstein M C. An introduction to social media for scientists[J]. PLoS Biology, 2013, 11(4): e1001535. 2 Osterrieder A. The value and use of social media as communication tool in the plant sciences[J]. Plant Methods, 2013, 9(1): Article No.26. 3 贾鹤鹏, 范敬群, 彭光芒. 从公众参与科学视角看微博对科学传播的挑战[J]. 科普研究, 2014, 9(2): 10-17, 32. 4 van Eperen L, Marincola F M. How scientists use social media to communicate their research[J]. Journal of Translational Medicine, 2011, 9: Article No.199. 5 Márquez M C, Porras A M. Science communication in multiple languages is critical to its effectiveness[J]. Frontiers in Communication, 2020, 5: 31. 6 Collins K, Shiffman D, Rock J. How are scientists using social media in the workplace?[J]. PLoS One, 2016, 11(10): e0162680. 7 Dudo A. Scientists, the media, and the public communication of science[J]. Sociology Compass, 2015, 9(9): 761-775. 8 López-Go?i I, Sánchez-Angulo M. Social networks as a tool for science communication and public engagement: focus on Twitter[J]. FEMS Microbiology Letters, 2018, 365(2): fnx246. 9 Cheng J, Adamic L, Dow P A, et al. Can cascades be predicted?[C]// Proceedings of the 23rd International Conference on World Wide Web. New York: ACM Press, 2014: 925-936. 10 Gao L Q, Zhou B, Jia Y, et al. Information cascading in social networks[M]// MDATA: A New Knowledge Representation Model. Cham: Springer, 2021: 234-254. 11 Adar E, Adamic L A. Tracking information epidemics in blogspace[C]// Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence. Washington, DC: IEEE Computer Society, 2005: 207-214. 12 Golub B, Jackson M O. Using selection bias to explain the observed structure of internet diffusions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(24): 10833-10836. 13 Leskovec J, Adamic L A, Huberman B A. The dynamics of viral marketing[J]. ACM Transactions on the Web, 2007, 1(1): 5-es. 14 Cao R M, Liu X F, Fang Z C, et al. How do scientific papers from different journal tiers gain attention on social media?[J]. Information Processing & Management, 2023, 60(1): 103152. 15 Cao R M, Wang X W, Xu X K, et al. Multiple bursts of highly retweeted articles on social media[J]. Scientometrics, 2021, 126(6): 5165-5179. 16 Ye Y E, Na J C, Oh P. Are automated accounts driving scholarly communication on Twitter? A case study of dissemination of COVID-19 publications[J]. Scientometrics, 2022, 127(5): 2151-2172. 17 Can E F, Oktay H, Manmatha R. Predicting retweet count using visual cues[C]// Proceedings of the 22nd ACM International Conference on Information & Knowledge Management. New York: ACM Press, 2013: 1481-1484. 18 Gayberi M, Oguducu S G. Popularity prediction of posts in social networks based on user, post and image features[C]// Proceedings of the 11th International Conference on Management of Digital EcoSystems. New York: ACM Press, 2020: 9-15. 19 Hong L J, Dan O, Davison B D. Predicting popular messages in Twitter[C]// Proceedings of the 20th International Conference Companion on World Wide Web. New York: ACM Press, 2011: 57-58. 20 Jenders M, Kasneci G, Naumann F. Analyzing and predicting viral tweets[C]// Proceedings of the 22nd International Conference on World Wide Web. New York: ACM Press, 2013: 657-664. 21 Ma Z Y, Sun A X, Cong G. On predicting the popularity of newly emerging hashtags in Twitter[J]. Journal of the American Society for Information Science and Technology, 2013, 64(7): 1399-1410. 22 Suh B, Hong L C, Pirolli P, et al. Want to be retweeted? Large scale analytics on factors impacting retweet in Twitter network[C]// Proceedings of the 2010 IEEE Second International Conference on Social Computing. Washington, DC: IEEE Computer Society, 2010: 177-184. 23 Tsur O, Rappoport A. What’s in a hashtag? Content based prediction of the spread of ideas in microblogging communities[C]// Proceedings of the Fifth ACM International Conference on Web Search and Data Mining. New York: ACM Press, 2012: 643-652. 24 Zhang J M, Wang Y, Shi M L, et al. Factors driving the popularity and virality of COVID-19 vaccine discourse on Twitter: text mining and data visualization study[J]. JMIR Public Health and Surveillance, 2021, 7(12): e32814. 25 Pancer E, Poole M. The popularity and virality of political social media: hashtags, mentions, and links predict likes and retweets of 2016 U.S. presidential nominees’ tweets[J]. Social Influence, 2016, 11(4): 259-270. 26 Naveed N, Gottron T, Kunegis J, et al. Bad news travel fast: a content-based analysis of interestingness on Twitter[C]// Proceedings of the 3rd International Web Science Conference. New York: ACM Press, 2011: 1-7. 27 Dang-Xuan L, Stieglitz S, Wladarsch J, et al. An investigation of influentials and the role of sentiment in political communication on Twitter during election periods[J]. Information, Communication & Society, 2013, 16(5): 795-825. 28 Fan R, Zhao J C, Chen Y, et al. Anger is more influential than joy: sentiment correlation in Weibo[J]. PLoS One, 2014, 9(10): e110184. 29 M?ller A M, Kühne R, Baumgartner S E, et al. Exploring user responses to entertainment and political videos: an automated content analysis of YouTube[J]. Social Science Computer Review, 2019, 37(4): 510-528. 30 Stieglitz S, Dang-Xuan L. Emotions and information diffusion in social media—sentiment of microblogs and sharing behavior[J]. Journal of Management Information Systems, 2013, 29(4): 217-248. 31 Kim J, Yoo J. Role of sentiment in message propagation: reply vs. retweet behavior in political communication[C]// Proceedings of the 2012 International Conference on Social Informatics. Washington, DC: IEEE Computer Society, 2012: 131-136. 32 Wu S M, Tan C H, Kleinberg J, et al. Does bad news go away faster?[C]// Proceedings of the 5th International AAAI Conference on Web and Social Media. Palo Alto: AAAI Press, 2011: 646-649. 33 Vosoughi S, Roy D, Aral S. The spread of true and false news online[J]. Science, 2018, 359(6380): 1146-1151. 34 Romero D M, Meeder B, Kleinberg J. Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on Twitter[C]// Proceedings of the 20th International Conference on World Wide Web. New York: ACM Press, 2011: 695-704. 35 Zhao Z L. Propagation structure feature of entertainment news in the Weibo online social network[J]. Europhysics Letters, 2021, 135(1): 16002. 36 钟智锦, 周金金, 徐铭达, 等. 娱乐信息与公共信息的扩散竞争: 网络结构和传播主体视角[J]. 新闻与传播研究, 2023, 30(3): 88-107, 128. 37 van Honk J, Costas R. Integrating context in Twitter metrics: preliminary investigation on the possibilities of hashtags as an altmetric resource[C]// Proceedings of the 2016 Altmetrics Workshop Bucharest. London: Digital Science and Research Solutions, 2016. DOI: 10.5446/46291. 38 Ye Y E, Na J C. To get cited or get tweeted: a study of psychological academic articles[J]. Online Information Review, 2018, 42(7): 1065-1081. 39 Maisner R S, Goydos C, Ong M, et al. Promoting publications through plastic surgery journal instagram accounts: is it worth it?[J]. Annals of Plastic Surgery, 2023, 90(6S): S693-S698. 40 Zhang Y F, Wang L, Zhu J J H, et al. Viral vs. broadcast: characterizing the virality and growth of cascades[J]. Europhysics Letters, 2020, 131(2): 28002. 41 Cao R M, Geng Y, Xu X K, et al. How does duplicate tweeting boost social media exposure to scholarly articles?[J]. Journal of Informetrics, 2022, 16(1): 101249. 42 Dow P A, Adamic L, Friggeri A. The anatomy of large Facebook cascades[C]// Proceedings of the 7th International AAAI Conference on Web and Social Media. Palo Alto: AAAI Press, 2013: 145-154. 43 Kumar R, Mahdian M, McGlohon M. Dynamics of conversations[C]// Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2010: 553-562. 44 Liben-Nowell D, Kleinberg J. Tracing information flow on a global scale using internet chain-letter data[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(12): 4633-4638. 45 Gruhl D, Guha R, Liben-Nowell D, et al. Information diffusion through blogspace[C]// Proceedings of the 13th International Conference on World Wide Web. New York: ACM Press, 2004: 491-501. 46 Cheng J, Adamic L A, Kleinberg J M, et al. Do cascades recur?[C]// Proceedings of the 25th International Conference on World Wide Web. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2016: 671-681. 47 纪晓玉, 曹仁猛, 张玮, 等. 风险扩散视角下网络突发事件的信息传播机制研究[J]. 新闻大学, 2024(10): 74-89, 124. 责任编辑 魏瑞斌) |
|
|
|