|
|
|
| Big Data Support System for Science and Technology Innovation Policy Analysis |
| He Defang1, Zeng Jianxun2, Chen Tao3, Pan Yuntao4, Yang Fangjuan5 |
1.China Association of Science and Technology Evaluation and Management of Scientific and Technical Achievement, Beijing 100081 2.School of Information Management, Central China Normal University, Wuhan 430079 3.Ministry of Science and Technology, Beijing 100862 4.Institute of Scientific and Technical Information of China, Beijing 100038 5.National Center for Science & Technology Evaluation, Beijing 100081 |
|
|
|
|
Abstract Analysis of science and technology innovation policies covers the entire chain and processes of scientific and technological innovation activities. This analysis requires the utilization of big data resources, methodologies, technologies, platforms, and tools to support and empower the processes, models, and scenarios of science and technology innovation policy analysis. Building upon a clarification of the connotations of science and technology innovation policy analysis and its big data characteristics, this study expounds on the logical chain of big data to support this analysis from the perspectives of practical needs and new opportunities, the functional mechanism of big data in this context, and the framework for science and technology innovation policy analysis. Consequently, a big data support system tailored for the analysis of science and technology innovation policy is proposed, and the process of analysis based on big data is discussed on four levels: the big data resource system, refined data processing system, intelligent computing and analysis system, and evidence generation system. Finally, the study suggests continuous advancements in areas such as big data resource platforms, tool models, application environments, and theoretical methods to enhance policy analysis with support capabilities and resource infrastructure for big data evidence, methodologies, and simulation.
|
|
Received: 22 April 2025
|
|
|
|
1 巴志超, 范呈镭, 刘蕾蕾, 等. 政策引用视角下政策核心要素变迁与治理结构演进[J]. 情报学报, 2025, 44(4): 381-397. 2 陈庆云. 公共政策分析[M]. 北京: 北京大学出版社, 2011. 3 姜鑫, 侯裕馨. 欧洲国家开放科学政策文本多维量化评价分析与启示[J]. 现代情报, 2025, 45(9): 150-164, 176. 4 Rothwell R, Zegveld W. Reindustrialization and technology[M]. Essex: Longman, 1985. 5 薛澜, 贾开, 赵静. 人工智能敏捷治理实践: 分类监管思路与政策工具箱构建[J]. 中国行政管理, 2024(3): 99-110. 6 黄萃, 任弢, 李江, 等. 责任与利益: 基于政策文献量化分析的中国科技创新政策府际合作关系演进研究[J]. 管理世界, 2015, 31(12): 68-81. 7 裴雷, 孙建军, 周兆韬. 政策文本计算: 一种新的政策文本解读方式[J]. 图书与情报, 2016(6): 47-55. 8 Lane J L. Let’s make science metrics more scientific[J]. Nature, 2010, 464(7288): 488-489. 9 Coulthart S, Riccucci R. Putting big data to work in government: the case of the United States border patrol[J]. Public Administration Review, 2022, 82(2): 280-289. 10 Asensio O I, Moore C E, Ulibarri N, et al. Data technologies and analytics for policy and governance: a landscape review[J]. Data & Policy, 2025, 7: e25. 11 赵志耘. 论科技情报赋能高水平科技自立自强[J]. 情报学报, 2024, 43(12): 1379-1385. 12 樊春良. 科技政策科学的思想与实践[J]. 科学学研究, 2014, 32(11): 1601-1607. 13 贺德方, 曾建勋, 陈涛, 等. 科技创新政策分析体系研究[J]. 中国软科学, 2025(1): 1-9. 14 张洋, 吴婷婷, 侯剑华. 大模型驱动科技创新评价若干问题的思考[J]. 图书情报知识, 2025, 42(1): 70-77, 88. 15 Hilbert M. Big data for development: a review of promises and challenges[J]. Development Policy Review, 2016, 34(1): 135-174. 16 杨慧. 社会科学研究中的政策文本分析: 方法论与方法[J]. 社会科学, 2023(12): 5-15. 17 周阳, 汪勇. 大数据重塑公共决策的范式转型、运行机理与治理路径[J]. 电子政务, 2021(9): 81-92. 18 Jarmin R S, O’Hara A B. Big data and the transformation of public policy analysis[J]. Journal of Policy Analysis and Management, 2016, 35(3): 715-721. 19 张晓东, 夏凡. 数据驱动的公共政策研究——以敏捷智库实践为例[J]. 智库理论与实践, 2023, 8(5): 118-127. 20 贺德方, 陈涛, 刘辉, 等. 科技活动全链条政策体系构建研究[J]. 中国软科学, 2024(6): 1-14. 21 余霄. 政策信息学: 公共政策学数字化发展的新路径[J]. 天府新论, 2023(5): 107-117. 22 王光辉, 刘开迪, 王雨飞. 基于大数据的公共政策评估研究: 机遇挑战、分析框架及对策建议[J]. 中国行政管理, 2023(5): 107-115. 23 郁俊莉, 姚清晨. 从数据到证据: 大数据时代政府循证决策机制构建研究[J]. 中国行政管理, 2020(4): 81-87. 24 曹玲静, 张志强. 政策信息学视角下政策文本量化方法研究进展[J]. 图书与情报, 2022(6): 70-82. 25 曹玲静, 张志强. 政策信息学的发展与前瞻[J]. 图书情报工作, 2021, 65(21): 38-50. 26 曾建勋. 推动中国式科技情报现代化进程[J]. 农业图书情报学报, 2023, 35(4): 100-101. 27 马雨萌, 黄金霞, 王昉, 等. 基于政策文本量化研究的科技政策分析服务平台建设[J]. 情报科学, 2022, 40(7): 169-176, 185. 28 赵彬彬, 陈凯华. 需求导向科技创新治理与国家创新体系效能[J]. 科研管理, 2023, 44(4): 1-10. 29 Ruggeri K. Assessing evidence based on scale can be a useful predictor of policy outcomes[J]. Policy Sciences, 2025, 58(1): 179-188. 30 Filgueiras F, Raymond A. Designing governance and policy for disruptive digital technologies[J]. Policy Design and Practice, 2023, 6(1): 1-13. 31 张志强, 范少萍. 论学科信息学的兴起与发展[J]. 情报学报, 2015, 34(10): 1011-1023. 32 吴江, 王凯利. 社会技术融合: 政策信息学的由来、范畴与框架[J]. 中国图书馆学报, 2024, 50(4): 53-70. 33 刘昊, 张志强. 文献计量视角下政策科学研究的新方向——从政策量化研究到政策信息学[J]. 情报杂志, 2019, 38(1): 180-186, 111. 34 曾大军, 霍红, 陈国青, 等. 政策信息学与政策智能研究中的关键科学问题[J]. 中国科学基金, 2021, 35(5): 719-725. |
|
|
|