|
|
Patent Infringement Risk Early Warning: Using Knowledge Graphs |
Ding Shengchun, Qin Tianyun, Wang Yilin |
Department of Information Management, School of Economics & Management, Nanjing University of Science & Technology, Nanjing 210094 |
|
|
Abstract Patented technologies for products in the same field have characteristics such as high technical relevance and enterprises face the potential danger of patent infringement in their operations and production activities. Based on the actual needs of patent infringement early warning of enterprises, it is of great significance to efficiently and accurately detect the risk of patent infringement of products; thus, this study proposes a Patent Infringement Risk Early Warning Model. In this model, the schema layer of the domain patent knowledge graph and product knowledge graph are redefined, covering three types of entities: component entities, structural entities, and efficacy entities, as well as four types of entity relationships: composition relationship, relative position relationship, connection relationship, and efficacy achievement relationship. Patent and product technical scheme knowledge graphs are constructed based on the BERT and BiLSTM models. Based on the ComplEx model, the knowledge graph was embedded to achieve a quantitative calculation of the similarity between products and patented technologies, and an infringement warning was issued according to the patent infringement risk index. Two types of products, air humidifiers and earphones, were used for the empirical research, and the accuracy rate of patent infringement warnings was 86.67%, which has a certain application value.
|
Received: 23 October 2023
|
|
|
|
1 刘嘉龙, 丁晟春. 产业领域前沿专利技术识别方法研究——以人工智能领域为例[J]. 信息资源管理学报, 2021, 11(6): 95-104, 115. 2 Manso G. Motivating innovation[J]. The Journal of Finance, 2011, 66(5): 1823-1860. 3 翟东升, 蔡文浩, 张杰, 等. 基于图相似度的专利侵权检测方法研究[J]. 图书情报工作, 2018, 62(5): 97-105. 4 张利英, 郭建平. 21世纪初世界科技走向及我国科技安全环境研究[J]. 科技进步与对策, 2004, 21(2): 14-16. 5 林俊. 专利预警综合指标体系运用研究[J]. 中国发明与专利, 2018, 15(3): 94-97. 6 马俊杰, 马利娟, 景晨思, 等. 企业专利侵权判定方法及应对策略研究[J]. 航天工业管理, 2021(5): 45-49. 7 吕学强, 罗艺雄, 李家全, 等. 中文专利侵权检测研究综述[J]. 数据分析与知识发现, 2021, 5(3): 60-68. 8 Lee C Y, Song B M, Park Y. How to assess patent infringement risks: a semantic patent claim analysis using dependency relationships[J]. Technology Analysis and Strategic Management, 2013, 25(1): 23-38. 9 邓亮, 曹存根. 一种专利知识图谱的构建方法[J]. 计算机科学, 2022, 49(11): 185-196. 10 李家全, 李宝安, 游新冬, 等. 基于专利知识图谱的专利术语相似度计算研究[J]. 数据分析与知识发现, 2020, 4(10): 104-112. 11 韩程程, 李磊, 刘婷婷, 等. 语义文本相似度计算方法[J]. 华东师范大学学报(自然科学版), 2020(5): 95-112. 12 徐英卓, 贾欢. 基于树结构的本体概念相似度计算方法[J]. 计算机系统应用, 2017, 26(3): 275-279. 13 于梦波, 杜建强, 罗计根, 等. 基于知识表示学习的知识图谱补全研究进展[J]. 计算机工程与应用, 2023, 59(18): 59-73. 14 祝德刚, 宫琳, 唐圣, 等. 基于专利知识图谱的产品创新概念设计方法[J]. 计算机集成制造系统, 2022, 28(11): 3599-3614. 15 朱惠, 王昊, 苏新宁, 等. 汉语领域术语非分类关系抽取方法研究[J]. 情报学报, 2018, 37(12): 1193-1203. 16 ?ari? J, Jensen L J, Ouzounova R, et al. Extraction of regulatory gene/protein networks from Medline[J]. Bioinformatics, 2006, 22(6): 645-650. 17 Yang Z H, Lin H F, Li Y P. BioPPISVMExtractor: a protein–protein interaction extractor for biomedical literature using SVM and rich feature sets[J]. Journal of Biomedical Informatics, 2010, 43(1): 88-96. 18 程威, 邵一帆, 钱龙华, 等. 基于最短依存路径和集成学习的化学物蛋白质关系抽取[J]. 中文信息学报, 2021, 35(4): 58-65. 19 于丽娅, 王自勤. 基于创新性评估的机电产品专利知识挖掘系统[J]. 机械设计与制造, 2017(9): 86-89, 93. 20 董文斌, 战洪飞, 余军合, 等. 机械产品专利知识的提取和应用[J]. 机械制造, 2021, 59(8): 1-8. 21 俞琰, 尚明杰, 赵乃瑄. 权利要求特征驱动的专利关键词抽取方法[J]. 情报学报, 2021, 40(6): 610-620. 22 王传栋, 徐娇, 张永. 实体关系抽取综述[J]. 计算机工程与应用, 2020, 56(12): 25-36. 23 Zhang Y Q, Yao Q M, Shao Y X, et al. NSCaching: simple and efficient negative sampling for knowledge graph embedding[C]// Proceedings of the 2019 IEEE 35th International Conference on Data Engineering. Piscataway: IEEE, 2019: 614-625. 责任编辑 冯家琪) |
|
|
|