|
|
Identification of Potential Emerging Technologies by Fusing SVM-LDA and Weighted Similarity: Taking the Field of Artificial Intelligence as an Example |
Ran Congjing, Tian Wenfang |
School of Information Management, Wuhan University, Wuhan 430072 |
|
|
Abstract In the context of a new round of technological revolution and accelerated industrial transformation, accurately identifying emerging technologies with disruptive potential in the constantly emerging technological ocean is of great significance for the nation, enterprise participants, and relevant commercial investment institutions. It is therefore important to grasp the development trends and directions of technological innovation, reasonably allocate scientific and technological resources, and carry out advance scientific and technological strategic planning and technological layout. This article proposes an emerging technology topic recognition model based on knowledge-enhanced SVM-LDA. First, a classification standard for basic technology was developed based on the prior knowledge of the expert group; second, the technology category classification criteria were input into the SVM-LDA model as a priori knowledge to obtain the technology topic clustering results; third, a weighted similarity calculation based on category subject terms was performed to identify potential emerging key technologies; and fourth, an empirical study was conducted using the field of artificial intelligence as an example. Finally, 24 potential emerging technologies were obtained, mainly distributed across six major categories: special robot technology, monitoring and early warning technology, video and image processing technology, voice recognition technology, automated planning and decision-making techniques, and natural language processing technology.
|
Received: 07 October 2023
|
|
|
|
1 Rotolo D, Hicks D, Martin B R. What is an emerging technology?[J]. Research Policy, 2015, 44(10): 1827-1843. 2 Meeting summary[C/OL]// Proceedings of the Global Infrastructure/Standards Working Group, December 17-19, 2002, Atlanta, Georgia. [2024-04-20]. https://docsbay.net/doc/139866/global-infrastructure-standards-working-group. 3 宋凯, 朱彦君. 专利前沿技术主题识别及趋势预测方法——以人工智能领域为例[J]. 情报杂志, 2021, 40(1): 33-38. 4 Christensen C M. The innovator’s dilemma: when new technologies cause great firms to fail[M]. Boston: Harvard Business Review Press, 2013. 5 苏成, 赵志耘, 赵筱媛, 等. 颠覆性技术新阐释: 概念、内涵及特征[J]. 情报学报, 2021, 40(12): 1253-1262. 6 Shen Y C, Chang S H, Lin G T R, et al. A hybrid selection model for emerging technology[J]. Technological Forecasting and Social Change, 2010, 77(1): 151-166. 7 魏国平. 新兴技术管理策略研究——基于新兴技术特征的分类分析[D]. 杭州: 浙江大学, 2006. 8 谈毅, 黄燕丽. 基于过程的新兴技术规划与选择模型研究[J]. 科技管理研究, 2007, 27(8): 5-8. 9 Small H, Boyack K W, Klavans R. Identifying emerging topics in science and technology[J]. Research Policy, 2014, 43(8): 1450-1467. 10 Fujita K, Kajikawa Y, Mori J, et al. Detecting research fronts using different types of weighted citation networks[J]. Journal of Engineering and Technology Management, 2014, 32: 129-146. 11 Porter A L, Garner J, Carley S F, et al. Emergence scoring to identify frontier R&D topics and key players[J]. Technological Forecasting and Social Change, 2019, 146: 628-643. 12 Wang Q. A bibliometric model for identifying emerging research topics[J]. Journal of the Association for Information Science and Technology, 2018, 69(2): 290-304. 13 李昌, 杨中楷, 董坤. 基于多维属性动态变化特征的新兴技术识别研究[J]. 情报学报, 2022, 41(5): 463-474. 14 周海炜, 吴成凤. 基于专利SAO结构和多指标评价的新兴技术识别研究——以手机芯片领域为例[J]. 情报杂志, 2022, 41(2): 86-94, 48. 15 高楠, 高嘉骐, 陈洪璞. 新兴技术识别与演化路径分析方法研究——以集成电路领域为例[J]. 情报科学, 2023, 41(3): 127-135, 172. 16 魏明珠, 郑荣, 高志豪, 等. 融合知识图谱和深度神经网络的产业新兴技术预测模型研究[J]. 情报学报, 2022, 41(11): 1134-1148. 17 孔德婧, 董放, 陈子婧, 等. 离群专利视角下的新兴技术预测——基于BERT模型和深度神经网络[J]. 图书情报工作, 2021, 65(17): 131-141. 18 王秀红, 高敏. 基于BERT-LDA的关键技术识别方法及其实证研究——以农业机器人为例[J]. 图书情报工作, 2021, 65(22): 114-125. 19 罗恺, 袁晓东. 基于LDA主题模型与社会网络的专利技术融合趋势研究——以关节机器人为例[J]. 情报杂志, 2021, 40(3): 89-97. 20 苗红, 赵润博, 黄鲁成, 等. 基于LDA-SVM分类算法的技术融合测度研究[J]. 科学学与科学技术管理, 2018, 39(10): 13-29. 21 Kyebambe M N, Cheng G, Huang Y Q, et al. Forecasting emerging technologies: a supervised learning approach through patent analysis[J]. Technological Forecasting and Social Change, 2017, 125: 236-244. 22 刘红光, 马双刚, 刘桂锋. 基于机器学习的专利文本分类算法研究综述[J]. 图书情报研究, 2016, 9(3): 79-86. 23 Zhou Y, Dong F, Liu Y F, et al. A deep learning framework to early identify emerging technologies in large-scale outlier patents: an empirical study of CNC machine tool[J]. Scientometrics, 2021, 126(2): 969-994. 24 Schiebel E, H?rlesberger M, Roche I, et al. An advanced diffusion model to identify emergent research issues: the case of optoelectronic devices[J]. Scientometrics, 2010, 83(3): 765-781. 25 Lee C, Kwon O, Kim M, et al. Early identification of emerging technologies: a machine learning approach using multiple patent indicators[J]. Technological Forecasting and Social Change, 2018, 127: 291-303. 26 宋博文, 栾春娟, 梁丹妮. 机器学习视域下新兴技术主题识别研究——基于技术特征相似性[J]. 现代情报, 2022, 42(9): 49-57. 27 Yun J, Geum Y. Automated classification of patents: a topic modeling approach[J]. Computers & Industrial Engineering, 2020, 147: 106636. 28 佟昕瑀, 赵蕊洁, 路永和. 基于预训练模型的多标签专利分类研究[J]. 数据分析与知识发现, 2022, 6(2/3): 129-137. 29 龚圣杰. 基于关键词提取与余弦相似度算法的智能广告推荐软件[J]. 信息技术与信息化, 2022(2): 210-213. 30 Huang Z, Zhao W. A semantic matching approach addressing multidimensional representations for web service discovery[J]. Expert Systems with Applications, 2022, 210: 118468. |
|
|
|