|
|
Influence of Interdisciplinary Collaboration of Technical Teams on Breakthrough Innovation |
Ding Lerong1,2, Shi Jing1,2, Wu Keye1,2, Sun Jianjun1,2 |
1.Laboratory of Data Intelligence and Interdisciplinary Innovation, Nanjing University, Nanjing 210023 2.School of Information Management, Nanjing University, Nanjing 210023 |
|
|
Abstract This study investigates the impact of interdisciplinary collaboration within technical teams on breakthrough innovation. Utilizing biomedicine patent data from the PATSTAT global patent database, we assess the interdisciplinary nature of technical teams across three dimensions: variety, balance, and disparity. The degree (measured by the D index) and the quantity of breakthrough innovation are employed to qualify the achievements of these teams. Using multiple linear regression analysis, we analyze the influence of interdisciplinary collaboration within technical teams on breakthrough innovation. The results show that, in the field of biomedicine, interdisciplinary technical teams significantly impact breakthrough innovation. The higher the variety within these teams, the more likely they are to produce breakthrough innovations of high caliber and the more the breakthrough innovation achievements of the team conform to the characteristics of “small but beautiful.” Conversely, the greater the disparity within the technical team, the more likely they are to produce breakthrough innovations with low impact. Moreover, the higher the balance of the technical team, the more favorable the outcomes. We also find that the technical teams in the field of biomedicine are mainly small-scale teams with under ten people, among which young, non-transnational small-scale teams are more likely than others to produce high breakthrough innovation results.
|
Received: 25 April 2023
|
|
|
|
1 陈宝明. 一流创新团队致力于高水平科技自立自强[N]. 光明日报, 2021-11-24(7). 2 Wang X F, Wang Z N, Huang Y, et al. Measuring interdisciplinarity of a research system: detecting distinction between publication categories and citation categories[J]. Scientometrics, 2017, 111(3): 2023-2039. 3 张玲玲, 王蝶, 张利斌. 跨学科性与团队合作对大科学装置科学效益的影响研究[J]. 管理世界, 2019, 35(12): 199-212. 4 Tushman M L, Anderson P. Technological discontinuities and organizational environments[J]. Administrative Science Quarterly, 1986, 31(3): 439-465. 5 许海云, 王超, 董坤, 等. 基于创新链中知识溢出效应的产学研R&D合作对象识别方法研究[J]. 情报学报, 2017, 36(7): 682-694. 6 许海云, 王超, 陈亮, 等. 颠覆性技术的科学-技术-产业互动模式识别与分析[J]. 情报学报, 2023, 42(7): 816-831. 7 Wu L F, Wang D S, Evans J A. Large teams develop and small teams disrupt science and technology[J]. Nature, 2019, 566(7744): 378-382. 8 吴超. “新学科”学的基础理论研究[J]. 技术与创新管理, 2022, 43(3): 342-350. 9 Ba Z C, Liang Z T. A novel approach to measuring science-technology linkage: from the perspective of knowledge network coupling[J]. Journal of Informetrics, 2021, 15(3): 101167. 10 刘仲林. 交叉科学时代的交叉研究[J]. 科学学研究, 1993, 11(2): 9-16. 11 李江. “跨学科性”的概念框架与测度[J]. 图书情报知识, 2014(3): 87-93. 12 邢飞, 彭国超, 贾怡晨, 等. 跨学科团队知识整合影响因素研究——以智能制造项目为例[J]. 现代情报, 2020, 40(5): 41-50. 13 黄颖, 张琳, 孙蓓蓓, 等. 跨学科的三维测度——外部知识融合、内在知识会聚与科学合作模式[J]. 科学学研究, 2019, 37(1): 25-35. 14 廖青云. 科研团队识别及其绩效影响因素研究[D]. 北京: 北京理工大学, 2018. 15 陈平. 基于社会网络分析的跨学科团队评价研究[J]. 科学与管理, 2013, 33(3): 66-68. 16 Raasch C, Lee V, Spaeth S, et al. The rise and fall of interdisciplinary research: the case of open source innovation[J]. Research Policy, 2013, 42(5): 1138-1151. 17 Stirling A. A general framework for analysing diversity in science, technology and society[J]. Journal of the Royal Society Interface, 2007, 4(15): 707-719. 18 Larivière V, Gingras Y. On the relationship between interdisciplinarity and scientific impact[J]. Journal of the American Society for Information Science and Technology, 2010, 61(1): 126-131. 19 Brillouin L. Science and information theory[M]. New York: Academic Press, 1956. 20 Rafols I, Meyer M. Diversity and network coherence as indicators of interdisciplinarity: case studies in bionanoscience[J]. Scientometrics, 2010, 82(2): 263-287. 21 Kuhn T S. The structure of scientific revolutions[M]. Chicago: University of Chicago Press, 1962. 22 Foster R N. Working the S-curve: assessing technological threats[J]. Research Management, 1986, 29(4): 17-20. 23 庄子银, 贾红静, 肖春唤. 突破性创新研究进展[J]. 经济学动态, 2020(9): 145-160. 24 Dewar R D, Dutton J E. The adoption of radical and incremental innovations: an empirical analysis[J]. Management Science, 1986, 32(11): 1422-1433. 25 Zhang Y, Qian Y, Huang Y, et al. An entropy-based indicator system for measuring the potential of patents in technological innovation: rejecting moderation[J]. Scientometrics, 2017, 111(3): 1925-1946. 26 Fontana R, Nuvolari A, Shimizu H, et al. Reassessing patent propensity: evidence from a dataset of R&D awards, 1977-2004[J]. Research Policy, 2013, 42(10): 1780-1792. 27 Funk R J, Owen-Smith J. A dynamic network measure of technological change[J]. Management Science, 2017, 63(3): 791-817. 28 Hülsheger U R, Anderson N, Salgado J F. Team-level predictors of innovation at work: a comprehensive meta-analysis spanning three decades of research[J]. Journal of Applied Psychology, 2009, 94(5): 1128-1145. 29 Jehn K A, Northcraft G B, Neale M A. Why differences make a difference: a field study of diversity, conflict and performance in workgroups[J]. Administrative Science Quarterly, 1999, 44(4): 741-763. 30 Hollingsworth J R. Institutionalizing excellence in biomedical research: the case of the Rockefeller University[M]// Creating a Tradition of Biomedical Research: Contributions to the History of the Rockefeller University. New York: Rockefeller University Press, 2004: 17-63. 31 Bunderson J S, Sutcliffe K M. Comparing alternative conceptualizations of functional diversity in management teams: process and performance effects[J]. Academy of Management Journal, 2002, 45(5): 875-893. 32 Fung J M Y, Au W T. Effect of inequality on cooperation: heterogeneity and hegemony in public goods dilemma[J]. Organizational Behavior and Human Decision Processes, 2014, 123(1): 9-22. 33 Chiravuri A, Nazareth D, Ramamurthy K. Cognitive conflict and consensus generation in virtual teams during knowledge capture: comparative effectiveness of techniques[J]. Journal of Management Information Systems, 2011, 28(1): 311-350. 34 斯蒂芬·P·罗宾斯. 管理学[M]. 北京: 中国人民大学出版社, 1991. 35 石静, 孙建军. 科技创新团队的知识网络构建与知识测度研究[J]. 情报学报, 2022, 41(9): 900-914. 36 熊文靓, 付慧真. 交叉科学测度理论、进展与展望[J]. 图书情报工作, 2022, 66(21): 132-144. 37 孙娜, 乔锦忠. 跨学科研究对学者科研产出的影响——以化学领域“杰青”学者为例[J]. 重庆高教研究, 2023, 11(3): 79-92. 38 沈樱洋. 基于引用内容分析的学科距离计算研究[D]. 武汉: 华中师范大学, 2021. 39 Bornmann L, Tekles A. Disruption index depends on length of citation window[J]. El Profesional de la Información, 2019, 28(2): e280207. 40 吕冬晴, 阮选敏, 李江, 等. 跨学科知识融合对D指数的影响[J]. 情报学报, 2022, 41(3): 263-274. 41 Uzzi B, Mukherjee S, Stringer M, et al. Atypical combinations and scientific impact[J]. Science, 2013, 342(6157): 468-472. 42 姜丹, 刘洋, 王贞佐, 等. 生物制药创新人才培养模式的改革与实践[J]. 中国现代教育装备, 2018(5): 46-49. 43 Salas E, Dickinson T L, Converse S A, et al. Toward an understanding of team performance and training[M]// Teams: Their Training and Performance. Norwood: Ablex Publishing, 1992: 3-29. 44 许治, 陈丽玉, 王思卉. 高校科研团队合作程度影响因素研究[J]. 科研管理, 2015, 36(5): 149-161. 45 Dahlin K B, Weingart L R, Hinds P J. Team diversity and information use[J]. Academy of Management Journal, 2005, 48(6): 1107-1123. 46 Nonaka I, Takeuchi H. The knowledge-creating company: how Japanese companies create the dynamics of innovation[M]. New York: Oxford University Press, 1995. 47 Belkhouja M, Fattoum S, Yoon H. Does greater diversification increase individual productivity? The moderating effect of attention allocation[J]. Research Policy, 2021, 50(6): 104256. 48 Li J C, Yin Y A, Fortunato S, et al. Nobel laureates are almost the same as us[J]. Nature Reviews Physics, 2019, 1: 301-303. 49 Bercovitz J, Feldman M. The mechanisms of collaboration in inventive teams: composition, social networks, and geography[J]. Research Policy, 2011, 40(1): 81-93. 50 Fleishman J A. Collective action as helping behavior: effects of responsibility diffusion on contributions to a public good[J]. Journal of Personality and Social Psychology, 1980, 38(4): 629-637. 51 高永丰. 虚拟团队组织学习、团队特征与创新绩效的关系研究——以校企合作为例[J]. 广东交通职业技术学院学报, 2021, 20(1): 51-56. 52 Kelley D J, Ali A, Zahra S A. Where do breakthroughs come from? Characteristics of high-potential inventions[J]. Journal of Product Innovation Management, 2013, 30(6): 1212-1226. 53 Katz J S, Martin B R. What is research collaboration?[J]. Research Policy, 1997, 26(1): 1-18. 54 Gibbons D, Olk P M. Individual and structural origins of friendship and social position among professionals[J]. Journal of Personality and Social Psychology, 2003, 84(2): 340-351. 55 Zeng A, Fan Y, Di Z R, et al. Fresh teams are associated with original and multidisciplinary research[J]. Nature Human Behaviour, 2021, 5(10): 1314-1322. 56 Falagas M E, Ierodiakonou V, Alexiou V G. At what age do biomedical scientists do their best work?[J]. The FASEB Journal, 2008, 22(12): 4067-4070. 57 高志, 张志强. 个人学术影响力与年龄的变化规律研究进展——基于自然科学领域[J]. 情报杂志, 2016, 35(2): 105-109, 156. 58 Levin S G, Stephan P E, Walker M B. Planck’s principle revisited: a note[J]. Social Studies of Science, 1995, 25(2): 275-283. 59 Wiersema M F, Bantel K A. Top management team demography and corporate strategic change[J]. Academy of Management Journal, 1992, 35(1): 91-121. 60 Schilling M A, Green E. Recombinant search and breakthrough idea generation: an analysis of high impact papers in the social sciences[J]. Research Policy, 2011, 40(10): 1321-1331. 61 Lee F. Recombinant uncertainty in technological search[J]. Management Science, 2001, 47(1): 117-132. |
|
|
|