|
|
The Influence of Network Characteristics of Cross-Border Teams on Disruptive Innovation Performance |
Lin Chunpei1,2,3, Zhu Xiaoyan1, Yu Chuanpeng4, Liao Yangyue4, Li Hailin1,5 |
1.Business School of Huaqiao University, Quanzhou 362021 2.Business Management Research Center, Huaqiao University, Quanzhou 362021 3.Fujian Xi Jinping Research Center of Socialism with Chinese Characteristics for a New Era, Research Base of Huaqiao University, Quanzhou 362021 4.Department of Tourism Management, South China University of Technology, Guangzhou 510006 5.Research Center of Applied Statics and Big Data, Huaqiao University, Xiamen 361021 |
|
|
Abstract Cross-border teams play an important role in the disruptive innovation activities of innovation entities such as enterprises, and the application of machine learning methods to identify the configuration path between their network characteristics and disruptive innovation performance is an important problem to be solved. Based on 139,999 patent data in the UAV field of the Incopat patent search platform, this study uses the community discovery algorithm to identify 185 cross-border teams from the cooperation relationship data of patent inventors, selects the network characteristic variables of cross-border teams according to social network theory, and uses the k-means clustering algorithm to classify cross-border teams. Furthermore, we used the decision tree CART algorithm to explore the influence of different types of cross-border team network characteristics on disruptive innovation performance. The results show that (1) there are three types of cross-border teams: binary cooperation, quasi-perfect cooperation, and complex cooperation, and different cross-border team types have different effects on disruptive innovation performance; the quasi-perfect cooperation team has the highest proportion of highly disruptive innovation performance, while the dualistic cooperation team has the lowest proportion of highly disruptive innovation performance; (2) cooperation intensity is universal, which is the core factor that affects the disruptive innovation performance of different cross-border teams at different levels; and (3) cooperation intensity positively affects the disruptive innovation performance of binary cooperative teams. The disruptive innovation performance of quasi-perfect cooperative teams is jointly affected by the aggregation coefficient, cooperation intensity, and team size. For complex cooperative teams with high cooperation intensity, maintaining a low network density is conducive to improving disruptive innovation performance.
|
Received: 18 July 2023
|
|
|
|
1 李东红, 陈昱蓉, 周平录. 破解颠覆性技术创新的跨界网络治理路径——基于百度Apollo自动驾驶开放平台的案例研究[J]. 管理世界, 2021, 37(4): 130-159. 2 张骁, 吴琴, 余欣. 互联网时代企业跨界颠覆式创新的逻辑[J]. 中国工业经济, 2019(3): 156-174. 3 王海军, 金姝彤, 束超慧, 等. 为什么硅谷能够持续产生颠覆性创新?——基于企业创新生态系统视角的分析[J]. 科学学研究, 2021, 39(12): 2267-2280. 4 臧维, 赵联东, 徐磊, 等. 团队跨界行为、知识整合能力与团队创造力[J]. 管理学报, 2019, 16(7): 1063-1071. 5 杨震宁, 侯一凡, 李德辉, 等. 中国企业“双循环”中开放式创新网络的平衡效应——基于数字赋能与组织柔性的考察[J]. 管理世界, 2021, 37(11): 184-205, 12. 6 刘小禹, 孙健敏, 周禹. 变革/交易型领导对团队创新绩效的权变影响机制——团队情绪氛围的调节作用[J]. 管理学报, 2011, 8(6): 857-864. 7 陈赛君, 陈智高. 近年我国管理科学与工程学科研究领域交叉特征[J]. 系统管理学报, 2013, 22(4): 544-552. 8 余义勇, 杨忠. 团队领导跨界行为如何影响团队创造力?——基于知识整合和团队氛围的整合视角[J]. 科学学与科学技术管理, 2020, 41(12): 129-144. 9 袁庆宏, 张华磊, 王震, 等. 研发团队跨界活动对团队创新绩效的“双刃剑” 效应——团队反思的中介作用和授权领导的调节作用[J]. 南开管理评论, 2015, 18(3): 13-23. 10 Marrone J A. Team boundary spanning: a multilevel review of past research and proposals for the future[J]. Journal of Management, 2010, 36(4): 911-940. 11 Somech A, Drach-Zahavy A. Translating team creativity to innovation implementation: the role of team composition and climate for innovation[J]. Journal of Management, 2013, 39(3): 684-708. 12 刘小禹, 刘军. 团队情绪氛围对团队创新绩效的影响机制[J]. 心理学报, 2012, 44(4): 546-557. 13 Choi J N, Sung S Y, Lee K, et al. Balancing cognition and emotion: innovation implementation as a function of cognitive appraisal and emotional reactions toward innovation[J]. Journal of Organizational Behavior, 2011, 32(1): 107-124. 14 彭伟, 周晗鹭, 符正平. 团队内部社会网络对团队创新绩效的影响机制——以企业R&D团队为样本的实证研究[J]. 科研管理, 2013, 34(12): 135-142. 15 罗瑾琏, 赵佳, 薛倩雯, 等. 团队领导的社会网络对团队创造力的影响——基于SL公司的案例研究[J]. 研究与发展管理, 2015, 27(2): 113-120. 16 韩炜, 高宇. 高管团队内部非正式社会网络联结与新创企业绩效——基于商业模式创新的中介作用[J]. 南开管理评论, 2022, 25(5): 65-74, 106, 75-76. 17 张金福, 黄雪晴. 创新网络结构对颠覆性创新的影响机制——双元性学习的中介作用[J]. 科技管理研究, 2020, 40(8): 7-16. 18 徐蕾, 魏江. 集群企业跨边界网络整合与二元创新能力共演——1989-2011年的纵向案例研究[J]. 科学学研究, 2013, 31(7): 1093-1102. 19 Salunke S, Weerawardena J, McColl-Kennedy J R. The central role of knowledge integration capability in service innovation-based competitive strategy[J]. Industrial Marketing Management, 2019, 76: 144-156. 20 Pullen A, de Weerd-Nederhof P C, Groen A J, et al. SME network characteristics vs. product innovativeness: how to achieve high innovation performance[J]. Creativity and Innovation Management, 2012, 21(2): 130-146. 21 Larsson R, Bengtsson L, Henriksson K, et al. The interorganizational learning dilemma: collective knowledge development in strategic alliances[J]. Organization Science, 1998, 9(3): 285-305. 22 Ahuja G. Collaboration networks, structural holes, and innovation: a longitudinal study[J]. Administrative Science Quarterly, 2000, 45(3): 425-455. 23 Wagner J A III. Studies of individualism-collectivism: effects on cooperation in groups[J]. Academy of Management Journal, 1995, 38(1): 152-173. 24 Reingen P H, Burt R S. Structural holes: the social structure of competition[J]. Journal of Marketing, 1994, 58(1): 152. 25 Sparrowe R T, Liden R C, Wayne S J, et al. Social networks and the performance of individuals and groups[J]. Academy of Management Journal, 2001, 44(2): 316-325. 26 Uzzi B, Spiro J. Collaboration and creativity: the small world problem[J]. American Journal of Sociology, 2005, 111(2): 447-504. 27 Muller E, Peres R. The effect of social networks structure on innovation performance: a review and directions for research[J]. International Journal of Research in Marketing, 2019, 36(1): 3-19. 28 Woods J, Galbraith B, Hewitt-Dundas N. Network centrality and open innovation: a social network analysis of an SME manufacturing cluster[J]. IEEE Transactions on Engineering Management, 2022, 69(2): 351-364. 29 Coleman J S. Social capital in the creation of human capital[J]. American Journal of Sociology, 1988, 94: S95-S120. 30 赵忠华. 技术创新扩散为中间变量的创新型产业集群网络关系特征提升创新绩效路径研究[J]. 科学管理研究, 2012, 30(6): 37-40. 31 Qiao T, Shan W, Zhang M L, et al. How to facilitate knowledge diffusion in complex networks: the roles of network structure, knowledge role distribution and selection rule[J]. International Journal of Information Management, 2019, 47: 152-167. 32 方爱华, 葛宏雨. 社会网络稳定性、信息流与企业创新绩效[J]. 工业技术经济, 2020, 39(9): 39-47. 33 Lin C, Wu Y J, Chang C, et al. The alliance innovation performance of R&D alliances—the absorptive capacity perspective[J]. Technovation, 2012, 32(5): 282-292. 34 李海林, 徐建宾, 林春培, 等. 合作网络结构特征对创新绩效影响研究[J]. 科学学研究, 2020, 38(8): 1498-1508. 35 王黎萤, 吴瑛, 朱子钦, 等. 专利合作网络影响科技型中小企业创新绩效的机理研究[J]. 科研管理, 2021, 42(1): 57-66. 36 Gao X, Guan J C, Rousseau R. Mapping collaborative knowledge production in China using patent co-inventorships[J]. Scientometrics, 2011, 88(2): 343-362. 37 Liang L M, Zhu L. Major factors affecting China’s inter-regional research collaboration: regional scientific productivity and geographical proximity[J]. Scientometrics, 2002, 55(2): 287-316. 38 向希尧, 蔡虹, 裴云龙. 跨国专利合作网络中3种接近性的作用[J]. 管理科学, 2010, 23(5): 43-52. 39 Christensen C M. The innovator’s dilemma: when new technologies cause great firms to fail[M]. Boston: Harvard Business School Press, 1997. 40 黄鲁成, 蒋林杉, 吴菲菲. 萌芽期颠覆性技术识别研究[J]. 科技进步与对策, 2019, 36(1): 10-17. 41 Dotsika F, Watkins A. Identifying potentially disruptive trends by means of keyword network analysis[J]. Technological Forecasting and Social Change, 2017, 119: 114-127. 42 Verhoeven D, Bakker J, Veugelers R. Measuring technological novelty with patent-based indicators[J]. Research Policy, 2016, 45(3): 707-723. 43 Hagen N T. Harmonic allocation of authorship credit: source-level correction of bibliometric bias assures accurate publication and citation analysis[J]. PLoS One, 2008, 3(12): e4021. 44 Chen J H, Wei H H, Chen C L, et al. A practical approach to determining critical macroeconomic factors in air-traffic volume based on k-means clustering and decision-tree classification[J]. Journal of Air Transport Management, 2020, 82: 101743. 45 Rutkowski L, Jaworski M, Pietruczuk L, et al. The CART decision tree for mining data streams[J]. Information Sciences, 2014, 266: 1-15. 46 陈志军, 马鹏程, 董美彤, 等. 母子公司研发管理控制点研究[J]. 科学学研究, 2018, 36(10): 1828-1836. 47 黄益平, 邱晗. 大科技信贷: 一个新的信用风险管理框架[J]. 管理世界, 2021, 37(2): 12-21, 50, 2, 16. 48 Wang M C, Chen M H. The more, the better? The impact of closure collaboration network and network structures on technology-based new ventures’ performance[J]. R&D Management, 2016, 46(S1): 174-192. 49 Leonard D, Sensiper S. The role of tacit knowledge in group innovation[J]. California Management Review, 1998, 40(3): 112-132. 50 李海林, 龙芳菊, 林春培. 网络整体结构与合作强度对创新绩效的影响[J]. 科学学研究, 2023, 41(1): 168-180. 51 Gilsing V, Nooteboom B. Density and strength of ties in innovation networks: an analysis of multimedia and biotechnology[J]. European Management Review, 2005, 2(3): 179-197. 52 Guo J F, Pan J F, Guo J X, et al. Measurement framework for assessing disruptive innovations[J]. Technological Forecasting and Social Change, 2019, 139: 250-265. |
|
|
|