|
|
Research on Improving the Semantic Main Path Analysis Method by Leveraging the Density Peak Clustering Algorithm |
Chen Liang1, Yu Chi1, Shang Weijiao2, Xu Haiyun3, Lyu Shijiong1, Chen Lili1 |
1.Institute of Scientific and Technical Information of China, Beijing 100038 2.Research Institute of Forestry Policy and Information, Chinese Academy of Forestry, Beijing 100091 3.Business School, Shandong University of Technology, Zibo 255000 |
|
|
Abstract The semantic main path analysis (sMPA) method overcomes the shortcomings of the traditional main path analysis (MPA) method, such as a single main path and low theme consistency. However, it also leaves two defects: the position of the selected main path in the semantic space may deviate from the cluster center, and the topic discrimination of different main paths is not obvious. To address this problem, this study proposes a gradually optimized main path selection method in which topic cluster density and path traversal weight are superimposed to form a composite density, and the location of the topic cluster center is optimized by adjusting the proportion of the two elements in the composite density. When the cluster center converges, the paths located in different topic cluster centers are outputted. This method is verified by applying it to the patent citation network of lithium-ion batteries for electric vehicles and the citation network of high-impact papers in the field of materials science. The experimental results show that not only is the layout of multiple main paths generated by the new method but the possibility of selecting improper main paths is also significantly reduced.
|
Received: 05 September 2022
|
|
|
|
1 陈亮, 杨冠灿, 张静, 等. 面向技术演化分析的多主路径方法研究[J]. 图书情报工作, 2015, 59(10): 124-130, 115. 2 Chen L, Xu S, Zhu L J, et al. A semantic main path analysis method to identify multiple developmental trajectories[J]. Journal of Informetrics, 2022, 16(2): 101281. 3 王敏, 银路. 技术演化的集成研究及新兴技术演化[J]. 科学学研究, 2008, 26(3): 466-471. 4 Batagelj V, Mrvar A. Pajek—analysis and visualization of large networks[C]// Proceedings of the International Symposium on Graph Drawing. Heidelberg: Springer, 2002: 477-478. 5 Hummon N P, Dereian P. Connectivity in a citation network: the development of DNA theory[J]. Social Networks, 1989, 11(1): 39-63. 6 隗玲, 方曙. 引文网络主路径研究进展评述及展望[J]. 情报理论与实践, 2016, 39(9): 128-133. 7 刘懿, 周丽英. 主路径分析方法研究进展[J]. 数字图书馆论坛, 2019(10): 8-15. 8 de Nooy W, Mrvar A, Batagelj V. Exploratory social network analysis with Pajek[M]. 2nd ed. New York: Cambridge University Press, 2011: 5-20. 9 张娴, 方曙. 专利引用网络主路径方法研究述评与展望[J]. 图书情报工作, 2016, 60(20): 140-148. 10 Liu J S, Lu L Y Y, Ho M H C. A few notes on main path analysis[J]. Scientometrics, 2019, 119(1): 379-391. 11 Batagelj V. Efficient algorithms for citation network analysis[OL]. (2003-09-14) [2023-09-14]. https://arxiv.org/abs/cs/0309023. 12 陈亮, 张志强, 尚玮姣. 专利引文分析方法研究进展[J]. 现代图书情报技术, 2013(S1): 75-81. 13 Liu J S, Lu L Y Y, Ho M H C. A note on choosing traversal counts in main path analysis[J]. Scientometrics, 2020, 124(1): 783-785. 14 Xu S, Hao L Y, An X, et al. Emerging research topics detection with multiple machine learning models[J]. Journal of Informetrics, 2019, 13(4): 100983. 15 Huang Y, Zhu F J, Porter A L, et al. Exploring technology evolution pathways to facilitate technology management: from a technology life cycle perspective[J]. IEEE Transactions on Engineering Management, 2021, 68(5): 1347-1359. 16 Lai K K, Chen H C, Chang Y H, et al. A structured MPA approach to explore technological core competence, knowledge flow, and technology development through social network patentometrics[J]. Journal of Knowledge Management, 2021, 25(2): 402-432. 17 Martinelli A. An emerging paradigm or just another trajectory? Understanding the nature of technological changes using engineering heuristics in the telecommunications switching industry[J]. Research Policy, 2012, 41(2): 414-429. 18 Choi C, Park Y. Monitoring the organic structure of technology based on the patent development paths[J]. Technological Forecasting and Social Change, 2009, 76(6): 754-768. 19 Kim J, Shin J. Mapping extended technological trajectories: integration of main path, derivative paths, and technology junctures[J]. Scientometrics, 2018, 116(3): 1439-1459. 20 Kim M, Baek I, Song M. Topic diffusion analysis of a weighted citation network in biomedical literature[J]. Journal of the Association for Information Science and Technology, 2018, 69(2): 329-342. 21 Liu J S, Kuan C H. A new approach for main path analysis: decay in knowledge diffusion[J]. Journal of the Association for Information Science and Technology, 2016, 67(2): 465-476. 22 吴菲菲, 陈肖微, 黄鲁成, 等. 基于语义相似度的技术多主题演化路径识别方法研究[J]. 情报杂志, 2018, 37(5): 91-96. 23 Yu D J, Yan Z P. Main path analysis considering citation structure and content: case studies in different domains[J]. Journal of Informetrics, 2023, 17(1): 101381. 24 夏红玉, 胡潜, 王忠义. 基于引文重要性的知识流动主路径分析[J]. 情报学报, 2022, 41(5): 451-462. 25 Jiang X R, Liu J J. Extracting the evolutionary backbone of scientific domains: the semantic main path network analysis approach based on citation context analysis[J]. Journal of the Association for Information Science and Technology, 2023, 74(5): 546-569. 26 Oh M, Jang H, Kim S, et al. Main path analysis for technological development using SAO structure and DEMATEL based on keyword causality[J]. Scientometrics, 2023, 128(4): 2079-2104. 27 Yeo W, Kim S, Lee J M, et al. Aggregative and stochastic model of main path identification: a case study on graphene[J]. Scientometrics, 2014, 98(1): 633-655. 28 Verspagen B. Mapping technological trajectories as patent citation networks: a study on the history of fuel cell research[J]. Advances in Complex Systems, 2007, 10(1): 93-115. 29 Liu J S, Lu L Y Y, Lu W M, et al. Data envelopment analysis 1978-2010: a citation-based literature survey[J]. Omega, 2013, 41(1): 3-15. 30 马瑞敏, 张欣. 基于Pathfinder算法的领域知识交流主路径发现研究[J]. 情报学报, 2016, 35(8): 856-863. 31 Tu Y N, Hsu S L. Constructing conceptual trajectory maps to trace the development of research fields[J]. Journal of the Association for Information Science and Technology, 2016, 67(8): 2016-2031. 32 Page L, Brin S, Motwani R, et al. The PageRank citation ranking: bringing order to the web[R]. Palo Alto: Stanford InfoLab, 1999. 33 Dietz L, Bickel S, Scheffer T. Unsupervised prediction of citation influences[C]// Proceedings of the 24th International Conference on Machine Learning. New York: ACM Press, 2007: 233-240. 34 Liu J S, Lu L Y Y. An integrated approach for main path analysis: development of the Hirsch index as an example[J]. Journal of the American Society for Information Science and Technology, 2012, 63(3): 528-542. 35 Fontana R, Nuvolari A, Verspagen B. Mapping technological trajectories as patent citation networks. An application to data communication standards[J]. Economics of Innovation and New Technology, 2009, 18(4): 311-336. 36 Xiao Y, Lu L Y Y, Liu J S, et al. Knowledge diffusion path analysis of data quality literature: a main path analysis[J]. Journal of Informetrics, 2014, 8(3): 594-605. 37 Yu D J, Pan T X. Tracing knowledge diffusion of TOPSIS: a historical perspective from citation network[J]. Expert Systems with Applications, 2021, 168: 114238. 38 万小萍, 汪锦霞, 刘向. 科技主路径分析: 提升路径多样性的组合路径[J]. 情报理论与实践, 2019, 42(6): 83-87. 39 Landauer T K, Foltz P W, Laham D. An introduction to latent semantic analysis[J]. Discourse Processes, 1998, 25(2/3): 259-284. 40 Blei D M, Ng A Y, Jordan M I. Latent Dirichlet allocation[J]. The Journal of Machine Learning Research, 2003, 3: 993-1022. 41 Rodriguez A, Laio A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191): 1492-1496. 42 Zhang Q Q, Li C J, Wu Y Q. Analysis of research and development trend of the battery technology in electric vehicle with the perspective of patent[J]. Energy Procedia, 2017, 105: 4274-4280. 43 Jape S R, Thosar A. Comparison of electric motors for electric vehicle application[J]. International Journal of Research in Engineering and Technology, 2017, 6(9): 12-17. 44 Hannan M A, Lipu M S H, Hussain A, et al. A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: challenges and recommendations[J]. Renewable and Sustainable Energy Reviews, 2017, 78: 834-854. 45 Sanguesa J A, Torres-Sanz V, Garrido P, et al. A review on electric vehicles: technologies and challenges[J]. Smart Cities, 2021, 4(1): 372-404. 46 Funk R J, Owen-Smith J. A dynamic network measure of technological change[J]. Management Science, 2017, 63(3): 791-817. 47 Wu L F, Wang D S, Evans J A. Large teams develop and small teams disrupt science and technology[J]. Nature, 2019, 566(7744): 378-382. 48 Park M, Leahey E, Funk R J. Papers and patents are becoming less disruptive over time[J]. Nature, 2023, 613(7942): 138-144. 49 Clarivate. Highly cited researchers[EB/OL]. [2023-06-11]. https://recognition.webofscience.com/wos-op/awards/highly-cited/2021/methodology/. |
|
|
|