|
|
Scenario-Based Competitive Industrial Intelligent Service Model for National Strategy |
Zheng Rong1,2, Wang Xiaoyu1, Gao Zhihao1, Wei Mingzhu1 |
1.School of Business and Management, Jilin University, Changchun 130012 2.Information Resources Research Center, Jilin University, Changchun 130012 |
|
|
Abstract To describe industrially competitive intelligence service with fine granularity, this study constructs a scenario-based model for industrial competitive intelligent service, to enable the high-quality development of industry in complex environments. First, by inspecting domestic and foreign research on “scenario-based service, industrial competitive intelligence service model, intelligent intelligence, and intelligence intelligent service,” the concept of “scenario-based intelligent service for industrial competitive intelligence” is advanced, following the research logic of “strategic leadership and demand traction, scenario positioning and fine-grained characterization, parallel systems and virtual-real interactions, paradigm shift and service dimension upgrading” to construct a scenario-based intelligent service model of industrial competitive intelligence by fusing scenario theory and parallel intelligence thought. Based on an empirical study conducted on the new energy automobile industry, this study proposes an effective path for industrial competitive intelligence service. Four scenarios of intelligence service are considered for industry, including digital upgrading, core technology, emergency coordination, new industry, and new business cultivation, based on the five-tuple description of industrial intelligence scenarios, providing a panoramic description of the dimensions of service content, subject, object, tool/means, and capability. Accordingly, a scenario-based competitive industrial intelligent service model is constructed for national strategy, based on the new energy automobile industry as an example, to verify the feasibility and effectiveness of the model.
|
Received: 24 May 2023
|
|
|
|
1 陈剑, 刘运辉. 数智化使能运营管理变革: 从供应链到供应链生态系统[J]. 管理世界, 2021, 37(11): 227-240, 14. 2 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[EB/OL]. (2021-03-13) [2023-05-08]. http://www.gov.cn/xinwen/2021-03/13/content_5592681.htm. 3 科技部等六部门关于印发《关于加快场景创新以人工智能高水平应用促进经济高质量发展的指导意见》的通知[EB/OL]. (2022-07-29) [2023-05-08]. http://www.gov.cn/zhengce/zhengceku/2022-08/12/content_5705154.htm. 4 尹西明, 苏雅欣, 陈劲, 等. 场景驱动的创新: 内涵特征、理论逻辑与实践进路[J]. 科技进步与对策, 2022, 39(15): 1-10. 5 李白杨, 李纲, 王施运, 等. 场景的延伸: 从科技情报到科技服务[J]. 图书情报工作, 2020, 64(1): 64-69. 6 李阳, 孙建军. 复杂情境下应急管理情报工程服务机制构建及场景化应用[J]. 情报学报, 2022, 41(2): 107-117. 7 张艳丰, 欧志梅. 数字孪生技术驱动下智慧图书馆场景化服务模式研究[J]. 情报理论与实践, 2022, 45(8): 47-53. 8 约书亚·梅罗维茨. 消失的地域: 电子媒介对社会行为的影响[M]. 肖志军, 译. 北京: 清华大学出版社, 2002: 73-74. 9 Bitner M J. Servicescapes: the impact of physical surroundings on customers and employees[J]. Journal of Marketing, 1992, 56(2): 57-71. 10 Tombs A, McColl-Kennedy J R. Social-servicescape conceptual model[J]. Marketing Theory, 2003, 3(4): 447-475. 11 Hu H Y, Jasper C R. A cross-cultural examination of the effects of social perception styles on store image formation[J]. Journal of Business Research, 2007, 60(3): 222-230. 12 刘晗. 场景服务创新: 移动网络信息治理的场景化转型[J]. 学习与实践, 2020(9): 98-106. 13 曾建勋. 推进图书馆场景式服务[J]. 数字图书馆论坛, 2018(11): 1. 14 贺芳. 用户场景视域下专业出版知识服务模式探析[J]. 中国出版, 2022(9): 65-68. 15 张东华, 廖程程. 基于沉浸体验的档案馆场景化服务: 特征、机理与实现路径[J]. 档案管理, 2023, 260(1): 60-63. 16 高志豪, 郑荣, 魏明珠, 等. 多源数据驱动下产业协同应急智慧服务模式研究——以芯片产业“卡脖子”技术应急场景为例[J]. 情报理论与实践, 2023, 46(5): 154-165. 17 邹静, 沈费伟, 汤蓬涛, 等. 城市未来社区的场景建设、居民融入与数字治理[J]. 电子政务, 2023(7): 87-99. 18 邵明华, 杨甜甜. 场景赋能红色文化旅游发展的理论逻辑与多维路径[J]. 兰州大学学报(社会科学版), 2022, 50(6): 95-104. 19 王水莲, 钱鹏浩, 王静. 场景赋能驱动下的工业互联网平台成长演化——“柠檬豆”案例研究[J/OL]. 科技进步与对策, (2023-07-17) [2023-08-19]. https://kns.cnki.net/kcms/detail/42.1224.G3.20230717.1141.002.html. 20 Potan?ok M, ?erny J. Competitive technical intelligence: using patent data to determine smart city trends[J]. Journal of Urban and Regional Analysis, 2020, 12(1): 5-17. 21 Contreras R, Ochoa A, Cossío E, et al. Design and implementation of an IoT-based háptical interface implemented by memetic algorithms to improve competitiveness in an industry 4.0 model for the manufacturing sector[C]// Proceedings of the 9th International Conference on Innovations in Bio-Inspired Computing and Applications. Cham: Springer, 2019: 103-117. 22 郑荣, 高志豪, 魏明珠, 等. 面向国家重大战略的智慧情报服务: 内涵界定、赋能机制与逻辑进路[J]. 图书与情报, 2022(5): 115-124. 23 郑荣, 杨竞雄, 张薇, 等. 多源数据驱动的产业竞争情报智慧服务研究[J]. 情报学报, 2020, 39(12): 1295-1304. 24 李启涵. 中国中小企业商业模式创新——索科集团发展实证研究[M]. 北京: 知识产权出版社, 2011: 11-13. 25 逄锦荣, 苑春荟. 基于服务模式创新的物流业与制造业协同联动体系研究[M]. 北京: 北京邮电大学出版社, 2012: 29-31. 26 赵筱媛, 郑彦宁, 周洋, 等. 产业竞争情报服务模式分析流程研究与应用[J]. 情报理论与实践, 2014, 37(1): 74-78, 83. 27 陈峰. “产业大脑”的竞争情报服务模式分析[J]. 情报杂志, 2023,42(6): 73-79, 118. 28 张焱, 邢新欣. 基于“情报+”模式下产业竞争情报价值的实现机理研究——以电子信息产业为例[J]. 情报杂志, 2021, 40(9): 65-72. 29 龚花萍, 刘嘉良, 余建兵. 面向区域科技创新的竞争情报联动供给服务模式研究[J]. 情报杂志, 2020, 39(5): 64-70, 88. 30 郑荣, 高志豪, 魏明珠, 等. 基于联盟区块链的产业应急情报协同共享模式研究——以半导体产业应对“四川限电”应急场景为例[J]. 图书情报知识, 2022, 39(5): 67-81. 31 武法提, 黄石华, 殷宝媛. 场景化: 学习服务设计的新思路[J]. 电化教育研究, 2018, 39(12): 63-69. 32 张立超, 房俊民, 高士雷. 产业竞争情报的内涵、意义及范畴界定[J]. 情报杂志, 2010, 29(6): 152-156. 33 郑彦宁, 赵筱媛, 陈峰. 产业竞争情报的解析[J]. 情报学报, 2009, 28(6): 917-922. 34 马海群, 邹纯龙, 王今. 总体国家安全观视域下高新技术产业竞争态势评价体系研究[J]. 现代情报, 2022, 42(12): 43-52. 35 马费成, 李志元. 新文科背景下我国图书情报学科的发展前景[J]. 中国图书馆学报, 2020, 46(6): 4-15. 36 苏新宁. 大数据时代情报学学科崛起之思考[J]. 情报学报, 2018, 37(5): 451-459. 37 郑荣, 王晓宇, 高志豪, 等. 数智驱动背景下产业竞争情报智慧服务的认知框架与实现逻辑[J]. 情报学报, 2023, 42(7): 761-774. 38 苏新宁. 大数据、新文科背景下的图书情报学研究[J]. 西南民族大学学报(人文社会科学版), 2022, 43(10): 224-228. 39 王学昭, 王燕鹏, 赵萍, 等. 场景化智慧数据驱动的情报研究模式: 概念、技术框架和实验验证[J]. 数据分析与知识发现, 2023, 7(5): 1-9. 40 郑荣, 杨竞雄, 魏明珠, 等. 活动理论视角下的产业竞争情报智慧服务分析框架研究[J]. 情报杂志, 2021, 40(8): 38-44, 52. 41 王飞跃. 情报5.0: 平行时代的平行情报体系[J]. 情报学报, 2015, 34(6): 563-574. 42 杨静, 王晓, 王雨桐, 等. 平行智能与CPSS: 三十年发展的回顾与展望[J]. 自动化学报, 2023, 49(3): 614-634. 43 郑荣, 王晓宇, 张艺源. 基于ACP理论的企业竞争情报智能系统构建研究[J]. 情报理论与实践, 2021, 44(12): 148-157. 44 纪寿文, 李涛, 郑恩梅. 物流信息服务模式创新研究与实践[M]. 北京: 中国铁道出版社, 2016: 36-39. 45 50万亿!我国数字经济占GDP比重已超四成[EB/OL]. (2023-08-17) [2023-08-17]. https://m.gmw.cn/2023-08/17/content_1303484152.htm. 46 李锋. 健全关键核心技术攻关新型举国体制[EB/OL]. (2022-09-30) [2023-08-17]. https://news.gmw.cn/2022-09/30/content_36058941.htm. 47 余海燕, 沈桂龙, 余嘉勉. 后疫情时代产业链发展的趋势与应急管理[J]. 党政研究, 2021(3): 121-128. 48 Wang F Y. Control 5.0: from Newton to Merton in popper’s cyber-social-physical spaces[J]. IEEE/CAA Journal of Automatica Sinica, 2016, 3(3): 233-234. 49 李阳, 李纲. 工程化与平行化的融合: 大数据时代下的应急决策情报服务构思[J]. 图书情报知识, 2016(3): 4-14. 50 Javan M S, Akbari M K. SmartData 4.0: a formal description framework for big data[J]. The Journal of Supercomputing, 2019, 75(7): 3585-3620. 51 Le-Phuoc D, Quoc H N M, Quoc H N, et al. The Graph of Things: a step towards the Live Knowledge Graph of connected things[J]. Journal of Web Semantics, 2016, 37/38: 25-35. 52 Yang Q, Liu Y, Chen T J, et al. Federated machine learning: concept and applications[J]. ACM Transactions on Intelligent Systems and Technology, 2019, 10(2): Article No.12. 53 Androutsopoulou A, Charalabidis Y. A framework for evidence based policy making combining big data, dynamic modelling and machine intelligence[C]// Proceedings of the 11th International Conference on Theory and Practice of Electronic Governance. New York: ACM Press, 2018: 575-583. 54 Sakellaris K, Canton J, Zafeiratou E, et al. METIS-An energy modelling tool to support transparent policy making[J]. Energy Strategy Reviews, 2018, 22: 127-135. 55 Commission on Evidence-Based Policymaking. The promise of evidence-based policymaking[R/OL]. (2017-09-07) [2023-08-17]. https://www.fatherhood.gov/sites/default/files/resource_files/e000004015.pdf. 56 Carriger J F, Barron M G, Newman M C. Bayesian networks improve causal environmental assessments for evidence-based policy[J]. Environmental Science & Technology, 2016, 50(24): 13195-13205. 57 Manaligod H J T, Di?o M J S, Jo S, et al. Knowledge discovery computing for management[J]. Information Technology and Management, 2020, 21(2): 61-62. 58 国务院办公厅关于印发新能源汽车产业发展规划(2021—2035年)的通知[EB/OL]. (2020-11-02) [2023-03-22]. https://www.gov.cn/zhengce/content/2020-11/02/content_5556716.htm. 59 魏明珠, 郑荣, 高志豪, 等. 融合知识图谱和深度神经网络的产业新兴技术预测模型研究[J]. 情报学报, 2022, 41(11): 1134-1148. 60 乐为, 谢隽阳, 刘启巍, 等. 新能源汽车产业政策关联及其耦合效应研究[J]. 管理学刊, 2022, 35(5): 65-81. 61 金永花. 新发展机遇期我国新能源汽车产业链水平提升研究[J]. 经济纵横, 2022(1): 83-90. |
|
|
|