|
|
User Identification Across Social Media Based on Heterogeneous Graph Attention Network and Multi-Feature Fusion |
Bi Datian, Zhang Xue, Kong Jingyuan, Chen Gongkun |
School of Business and Management, Jilin University, Changchun130012 |
|
|
Abstract Cross-social media user identification is crucial for guiding the collaborative governance of online public opinion and for comprehensively identifying and predicting user preferences. This study introduces a model for recognizing cross-social media users that integrates heterogeneous feature embedding and dynamic entity association to address the issues of weak data representability and neglect of the dynamic and associative nature of user information in current methods. The heterogeneous information networks of various social media platforms were created by incorporating basic user attributes, content generation, and social structure information. A new meta-path recognition strategy was designed to construct an adjacency matrix, allowing the heterogeneous graph attention network model to aggregate user node information and enhance the representability of node features. Additionally, three continuous time decay functions were introduced to weigh the entity similarity matrix across social media platforms, enhancing the dynamic relationship between entities. By integrating features from both single and cross-social networks, a multi-layer perceptron was utilized to achieve the recognition and prediction of cross-social media users. Experiments conducted on the real Weibo-Zhihu dataset showed that the overall performance of the model was superior to that of other benchmark models. The linear attenuation function was found to have the most significant impact, and the meta-path detection strategy proposed in this article played a pivotal role in improving detection effectiveness.
|
Received: 16 October 2023
|
|
|
|
1 Backlinko Team. Social media usage & growth statistics[EB/OL]. (2024-09-06). https://backlinko.com/social-media-users. 2 Gao H, Wang Y Q, Shao J L, et al. User identity linkage across social networks with the enhancement of knowledge graph and time decay function[J]. Entropy, 2022, 24(11): 1603. 3 张彬, 徐建民, 吴姣. 跨域推荐中的知识融合研究进展[J]. 现代情报, 2023, 43(3): 157-166. 4 刘忠宝, 赵文娟. 融合语义特征和分布特征的跨媒体关联分析方法研究[J]. 情报学报, 2021, 40(5): 471-478. 5 易明, 刘明, 冯翠翠. 融合异质信息网络表示学习的跨领域推荐研究[J]. 情报学报, 2022, 41(4): 337-349. 6 Yang Z G, Lin Z H, Guo L N, et al. MMED: a multi-domain and multi-modality event dataset[J]. Information Processing & Management, 2020, 57(6): 102315. 7 Wang Y Q, Feng C Y, Chen L, et al. User identity linkage across social networks via linked heterogeneous network embedding[J]. World Wide Web, 2019, 22(6): 2611-2632. 8 Diaz J, Poblete B, Bravo-Marquez F. An integrated model for textual social media data with spatio-temporal dimensions[J]. Information Processing & Management, 2020, 57(5): 102219. 9 余艳, 张文, 熊飞宇, 等. 融合知识图谱与神经网络赋能数智化管理决策[J]. 管理科学学报, 2023, 26(5): 231-247. 10 Chung W, Lai V S. A temporal graph framework for intelligence extraction in social media networks[J]. Information & Management, 2023, 60(4): 103773. 11 邢玲, 邓凯凯, 吴红海, 等. 复杂网络视角下跨社交网络用户身份识别研究综述[J]. 电子科技大学学报, 2020, 49(6): 905-917. 12 Nie Y P, Jia Y, Li S D, et al. Identifying users across social networks based on dynamic core interests[J]. Neurocomputing, 2016, 210: 107-115. 13 Zafarani R, Liu H. Connecting corresponding identities across communities[J]. Proceedings of the International AAAI Conference on Web and Social Media, 2009, 3(1): 354-357. 14 Li Y J, Peng Y, Zhang Z, et al. A deep dive into user display names across social networks[J]. Information Sciences, 2018, 447: 186-204. 15 Mu X, Zhu F D, Lim E P, et al. User identity linkage by latent user space modelling[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2016: 1775-1784. 16 齐林峰. 利用实体解析的跨社交媒体同一用户识别[J]. 图书情报工作, 2017, 61(6): 107-114. 17 Li Y J, Ji W L, Gao X, et al. Matching user accounts with spatio-temporal awareness across social networks[J]. Information Sciences, 2021, 570: 1-15. 18 Chen B Y, Chen X L. MAUIL: multilevel attribute embedding for semisupervised user identity linkage[J]. Information Sciences, 2022, 593: 527-545. 19 Li Y J, Zhang Z, Peng Y, et al. Matching user accounts based on user generated content across social networks[J]. Future Generation Computer Systems, 2018, 83: 104-115. 20 Gao M C, Wang R H, Wang L, et al. Cross-domain entity identity association analysis and prediction based on representation learning[J]. International Journal of Distributed Sensor Networks, 2022, 18(11): 15501329221135060. 21 Liu L, Li X, Cheung W K, et al. Structural representation learning for user alignment across social networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 32(9): 1824-1837. 22 Ding X, Zhang H F, Ma C, et al. User identification across multiple social networks based on naive Bayes model[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(3): 4274-4285. 23 Sergey B, Anton K, Seungtaek P, et al. Joint link-attribute user identity resolution in online social networks[C]// Proceedings of the 6th International Conference on Knowledge Discovery and Data Mining, Workshop on Social Network Mining and Analysis. New York: ACM Press, 2012: 12-16. 24 Qu Y T, Ma H H, Wu H H, et al. A multiple salient features-based user identification across social media[J]. Entropy, 2022, 24(4): 495. 25 Chen D L, Su W, Wu P, et al. Joint multimodal sentiment analysis based on information relevance[J]. Information Processing & Management, 2023, 60(2): 103193. 26 何喜军, 吴爽爽, 武玉英, 等. 基于属性异构网络表示学习的专利交易推荐[J]. 情报学报, 2022, 41(11): 1214-1228. 27 Lin M, Wang T, Zhu Y F, et al. A heterogeneous directed graph attention network for inductive text classification using multilevel semantic embeddings[J]. Knowledge-Based Systems, 2024, 295: 111797. 28 Liu J W, Shi C, Yang C, et al. A survey on heterogeneous information network based recommender systems: concepts, methods, applications and resources[J]. AI Open, 2022, 3: 40-57. 29 Hu D, Feng D, Xie Y L. EGC: a novel event-oriented graph clustering framework for social media text[J]. Information Processing & Management, 2022, 59(6): 103059. 30 Wang X, Ji H Y, Shi C, et al. Heterogeneous graph attention network[C]// Proceedings of the World Wide Web Conference. New York: ACM Press, 2019: 2022-2032. 31 Bing R, Yuan G, Zhu M, et al. Heterogeneous graph neural networks analysis: a survey of techniques, evaluations and applications[J]. Artificial Intelligence Review, 2023, 56(8): 8003-8042. 32 Yang X, Deng C, Liu T L, et al. Heterogeneous graph attention network for unsupervised multiple-target domain adaptation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(4): 1992-2003. 33 Zhao Y, Wang L L, Wang C, et al. Multi-granularity heterogeneous graph attention networks for extractive document summarization[J]. Neural Networks, 2022, 155: 340-347. 34 Xu Y J, Fang Y, Huang C, et al. HGHAN: hacker group identification based on heterogeneous graph attention network[J]. Information Sciences, 2022, 612: 848-863. 35 Wang R H, Zhu H L, Wang L, et al. User identity linkage across social networks by heterogeneous graph attention network modeling[J]. Applied Sciences, 2020, 10(16): 5478. 36 Qiao S T, Zhou W, Luo F J, et al. Noise-reducing graph neural network with intent-target co-action for session-based recommendation[J]. Information Processing & Management, 2023, 60(6): 103517. 37 陈周国, 丁建伟, 明杨, 等. 基于异质图卷积注意网络的社交媒体账号分类[J]. 计算机系统应用, 2023, 32(7): 269-275. 38 Celik M, Dokuz A S. Discovering socially similar users in social media datasets based on their socially important locations[J]. Information Processing & Management, 2018, 54(6): 1154-1168. 39 叶佳鑫, 熊回香. 基于标签的跨领域资源个性化推荐研究[J]. 数据分析与知识发现, 2019, 3(2): 21-32. 40 卢菁, 王菊钿, 刘丛. 融合多特征的跨社交网络用户在线识别方法研究[J]. 小型微型计算机系统, 2021, 42(11): 2407-2414. 41 吕鲲, 项旻昊, 靖继鹏. 基于LDA2Vec和DTM模型的颠覆性技术主题识别研究——以能源科技领域为例[J]. 图书情报工作, 2023, 67(12): 89-102. 42 Heimann M, Shen H M, Safavi T, et al. REGAL: representation learning-based graph alignment[C]// Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM Press, 2018: 117-126. 43 Zhang J, Chen B, Wang X M, et al. MEgo2Vec: embedding matched ego networks for user alignment across social networks[C]// Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM Press, 2018: 327-336. 44 陈国青, 张维, 任之光, 等. 面向大数据管理决策研究的全景式PAGE框架[J]. 管理科学学报, 2023, 26(5): 4-22. |
|
|
|