|
|
Construction of Industrial Competitive Intelligence Service Platform in a Multisource Data Environment Based on the “Ternary World” and CPSS Theory |
Gao Zhihao1, Zheng Rong1,2, Wei Mingzhu1, Lei Yaxin1 |
1.School of Business and Management, Jilin University, Changchun 130012 2.Information Resources Research Center, Jilin University, Changchun 130012 |
|
|
Abstract In multisource data environments and complex information scenarios, the optimization and upgradation of industrial competitive intelligence services have become key to promoting a new round of industrial development and industrial chain optimization. The Chinese industry must urgently build a systematic competitive intelligence service platform to enable the healthy development of the industry in this era of great changes and complex international competition. This study focuses on the multisource data environment, uses the semi-structured interview method to investigate the current situation of industrial competitive intelligence service platforms, conducts a multidimensional analysis and data fusion of multisource data from the physical world, information space, and human society based on the Ternary World and cyber-physical-social systems (CPSS) modeling concepts, decomposes and reorganizes the elements of industrial competitive intelligence in terms of deconstruction, and then builds an intelligent service platform model for an industrial competitive intelligence. Finally, this study formed an industrial competitive intelligence service platform implementation path (intelligence collaborative collection and processing, multisource data cross modal and cross structure fusion, alliance chain distributed intelligence data storage, intelligence knowledge mining and discovery, and customized intelligent service) to provide integrated, intelligent, accurate, personalized and early-warning, “targeted” intelligent intelligence services for China’s industrial development.
|
Received: 14 June 2022
|
|
|
|
1 中共中央文献研究室. 习近平关于社会主义社会建设论述摘编[M]. 北京: 中央文献出版社, 2017. 2 郑彦宁, 刘志辉, 赵筱媛, 等. 基于多源信息与多元方法的产业竞争情报分析范式[J]. 情报学报, 2013, 32(3): 228-234. 3 陈峰. 产业竞争情报用户细分方法——以风能产业为例[J]. 情报杂志, 2013, 32(5): 56-60, 72. 4 赵筱媛, 郑彦宁, 周洋, 等. 产业竞争情报服务模式分析流程研究与应用[J]. 情报理论与实践, 2014, 37(1): 74-78, 83. 5 杨宇田. 商务社交网络的竞争情报分析——以LinkedIn为例[C]// 2017年北京科学技术情报学会年会——“科技情报发展助力科技创新中心建设”论坛论文集. 北京: 北京科学技术情报学会, 2017: 111-117. 6 陈峰, 杨宇田. 应对美国对华技术出口限制的产业竞争情报需求与服务研究——以半导体产业为例[J]. 情报杂志, 2019, 38(9): 36-41, 19. 7 侯元元, 乔婧, 黄裕荣, 等. 基于产业创新环境视角的产业竞争情报研究及实践[J]. 情报杂志, 2016, 35(7): 126-131. 8 陈思, 赵宇翔, 朱庆华. 基于技术链的产业技术竞争情报服务模式探析[J]. 情报理论与实践, 2020, 43(5): 31-37. 9 罗立群, 李广建. 智慧情报服务与知识融合[J]. 情报资料工作, 2019, 40(2): 87-94. 10 郑荣, 杨竞雄, 张薇, 等. 多源数据驱动的产业竞争情报智慧服务研究[J]. 情报学报, 2020, 39(12): 1295-1304. 11 郑荣, 王晓宇, 张艺源. 基于ACP理论的企业竞争情报智能系统构建研究[J]. 情报理论与实践, 2021, 44(12): 148-157. 12 Donohue D P, Murphy P M. Supporting competitive intelligence at DuPont by controlling information overload and cutting through the noise[J]. Journal of Information & Knowledge Management, 2016, 15(1): 1650004. 13 刘如, 唐磊, 吴晨生, 等. 基于情报主动推送服务的用户管理模型研究[J]. 竞争情报, 2016, 12(5): 10-16. 14 唐晓波, 郑杜, 翟夏普. 基于大数据智能的竞争情报系统模型研究[J]. 情报理论与实践, 2018, 41(11): 133-137, 160. 15 王心妍, 王晓慧. 产业竞争情报智慧服务体系研究[J]. 竞争情报, 2019, 15(3): 12-17. 16 王克平, 郭小芳, 车尧. 大数据思维下战略性新兴产业风险识别与竞争情报预警研究[J]. 情报理论与实践, 2021, 44(5): 92-99. 17 石进, 张天娇. 基于工业互联网的竞争情报系统研究[J]. 现代情报, 2020, 40(2): 18-25. 18 化柏林, 李广建. 大数据环境下的多源融合型竞争情报研究[J]. 情报理论与实践, 2015, 38(4): 1-5. 19 张亚男, 王克平, 王艺, 等. 基于区块链的竞争情报联盟协作平台模型研究[J]. 图书情报知识, 2021, 38(6): 100-109, 122. 20 Bose R. Competitive intelligence process and tools for intelligence analysis[J]. Industrial Management & Data Systems, 2008, 108(4): 510-528. 21 Lutz C J, Bodendorf F. Analyzing industry stakeholders using open-source competitive intelligence-a case study in the automotive supply industry[J]. Journal of Enterprise Information Management, 2020, 33(3): 579-599. 22 卡尔·波普尔. 客观知识: 一个进化论的研究[M]. 舒炜光, 卓如飞, 周柏乔, 等, 译. 上海: 上海译文出版社, 2015. 23 巴志超, 李纲, 安璐, 等. 国家安全大数据综合信息集成: 应用架构与实现路径[J]. 中国软科学, 2018(7): 9-20. 24 Liu Z, Yang D S, Wen D, et al. Cyber-physical-social systems for command and control[J]. IEEE Intelligent Systems, 2011, 26(4): 92-96. 25 乔纳森·卡勒. 《论解构: 结构主义之后的理论与批评》25周年版序言[J]. 陆扬,译. 上海大学学报(社会科学版), 2017, 34(2): 46-53. 26 巴志超, 刘学太, 马亚雪, 等. 国家安全大数据综合信息集成的战略思考与路径选择[J]. 情报学报, 2021, 40(11): 1139-1149. 27 许海云, 董坤, 隗玲, 等. 科学计量中多源数据融合方法研究述评[J]. 情报学报, 2018, 37(3): 318-328. 28 Zadeh A, Chen M H, Poria S, et al. Tensor fusion network for multimodal sentiment analysis[C]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2017: 1103-1114. 29 Liu Z, Shen Y, Lakshminarasimhan V B, et al. Efficient low-rank multimodal fusion with modality-specific factors[C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2018: 2247-2256. 30 Zadeh A, Liang P P, Mazumder N, et al. Memory fusion network for multi-view sequential learning[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2018: 5634-5641. 31 郑荣, 高志豪, 魏明珠, 等. 基于联盟区块链的产业应急情报协同共享模式研究——以半导体产业应对“四川限电”应急场景为例[J]. 图书情报知识, 2022, 39(5): 67-81. 32 崔金栋, 王胜文, 辛业春. 区块联盟链视角下智能电网数据管理技术框架研究[J]. 中国电机工程学报, 2020, 40(3): 836-848. 33 崔金栋, 高志豪. 基于大数据和微本体的微博信息推荐研究[J]. 情报资料工作, 2019, 40(5): 103-112. 34 张海涛, 周红磊, 李佳玮, 等. 信息不完全状态下重大突发事件态势感知研究[J]. 情报学报, 2021, 40(9): 903-913. 35 崔金栋, 高志豪. 基于微本体和图匹配的微博信息匹配算法研究[J]. 情报科学, 2019, 37(8): 44-50. |
|
|
|