|
|
Integration Forecast of Journal h-index |
Song Yanhui1,2, Fu Qiyuan1, Qiu Junping2 |
1.School of Management, Hangzhou Dianzi University, Hangzhou 310018 2.China Academy of Science and Education Evaluation, Hangzhou Dianzi University, Hangzhou 310018 |
|
|
Abstract The prediction of academic influence of journals has gradually attracted extensive attention in journal and academic circles. Hirsch pointed out that h-index has better predictive ability compared with other bibliometric indicators. Predicting the development of journal h-index is equivalent to predicting the evolution of journal impact. On the basis of the Chinese Social Science Citation Index (CSSCI) and 13 core journals of library and information science in China, the time series prediction models of Vector Autoregression (VAR), Vector Error Correction (VEC), and Long Short-Term Memory (LSTM) are established to dynamically predict the future h-index of journals. Then, on the basis of the integrated forecast method, the integrated forecast values of the above three models are formed, and the precision of each model and method is compared. Empirical results show that the Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE) of the integrated forecast method are lower than those of the three single prediction models, thereby improving prediction stability. The journal h-index shows a steady growth trend in the future, and the academic influence of the journal in the field of library and information will develop positively.
|
Received: 27 April 2022
|
|
|
|
1 陈卫静, 张宇娥, 杜丽. “破五唯”背景下高影响力期刊的多维评价与识别[J]. 中国科技期刊研究, 2021, 32(5): 680-686. 2 Braun T, Gl?nzel W, Schubert A. A Hirsch-type index for journals[J]. Scientometrics, 2006, 69(1): 169-173. 3 万锦堃, 花平寰, 宋媛媛, 等. h指数及其用于学术期刊评价[J]. 评价与管理, 2006, 4(3): 1-7. 4 Roediger H L. The h index in science: a new measure of scholarly contribution[J/OL]. APS Observer, 2006, 19(4). (2006-04-01). https://www.psychologicalscience.org/observer/the-h-index-in-science-a-new-measure-of-scholarly-contribution. 5 赵基明, 邱均平, 黄凯, 等. 一种新的科学计量指标——h指数及其应用述评[J]. 中国科学基金, 2008, 22(1): 23-32. 6 吕娜. 科研人员h指数动态变化趋势分析[J]. 情报理论与实践, 2015, 38(5): 112-115. 7 俞立平. 学术期刊h指数的时间演变规律研究[J]. 情报杂志, 2015, 34(1): 96-99. 8 Hirsch J E. Does the h index have predictive power?[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(49): 19193-19198. 9 Acuna D E, Allesina S, Kording K P. Predicting scientific success[J]. Nature, 2012, 489(7415): 201-202. 10 Penner O, Pan R K, Petersen A M, et al. On the predictability of future impact in science[J]. Scientific Reports, 2013, 3(10): Article No. 3052. 11 Dong Y X, Johnson R A, Chawla N V. Can scientific impact be predicted?[J]. IEEE Transactions on Big Data, 2016, 2(1): 18-30. 12 Ayaz S, Masood N, Islam M A. Predicting scientific impact based on h-index[J]. Scientometrics, 2018, 114(3): 993-1010. 13 Ibá?ez A, Larra?aga P, Bielza C. Predicting the h-index with cost-sensitive naive Bayes[C]// Proceedings of the 2011 11th International Conference on Intelligent Systems Design and Applications. Piscataway: IEEE, 2011: 599-604. 14 Weihs L, Etzioni O. Learning to predict citation-based impact measures[C]// Proceedings of the 2017 ACM/IEEE Joint Conference on Digital Libraries. Piscataway: IEEE, 2017: 1-10. 15 李勤敏, 郭进利. 基于主成分分析和神经网络对作者影响力的评估[J]. 情报学报, 2019, 38(7): 709-715. 16 梁惠敏. h指数的动态建模与预测[D]. 太原: 山西大学, 2020: 20-22. 17 Ye F Y, Rousseau R. The power law model and total career h-index sequences[J]. Journal of Informetrics, 2008, 2(4): 288-297. 18 Ibá?ez A, Bielza C, Larra?aga P. Cost-sensitive selective naive Bayes classifiers for predicting the increase of the h-index for scientific journals[J]. Neurocomputing, 2014, 135: 42-52. 19 Bertoli-Barsotti L, Lando T. The h-index as an almost-exact function of some basic statistics[J]. Scientometrics, 2017, 113(2): 1209-1228. 20 Sims C A. Macroeconomics and reality[J]. Econometrica, 1980, 48(1): 1-48. 21 Malesios C. Measuring the robustness of the journal h-index with respect to publication and citation values: a Bayesian sensitivity analysis[J]. Journal of Informetrics, 2016, 10(3): 719-731. 22 张玉新, 俞立平. 人文社科期刊载文量与影响因子关系比较研究——以美术设计学与情报学期刊为例[J]. 情报杂志, 2019, 38(11): 151-157. 23 Cheong C, Lee H. Forecasting with a parsimonious subset VAR model[J]. Economics Letters, 2014, 125(2): 167-170. 24 张振龙, 孙慧. 新疆区域水资源对产业生态系统与经济增长的动态关联——基于VAR模型[J]. 生态学报, 2017, 37(16): 5273-5284. 25 Huang B N, Hwang M J, Yang C W. Causal relationship between energy consumption and GDP growth revisited: a dynamic panel data approach[J]. Ecological Economics, 2008, 67(1): 41-54. 26 Lyhagen J, Ekberg S, Eidestedt R. Beating the VAR: improving Swedish GDP forecasts using error and intercept corrections[J]. Journal of Forecasting, 2015, 34(5): 354-363. 27 Abrishami A, Aliakbary S. Predicting citation counts based on deep neural network learning techniques[J]. Journal of Informetrics, 2019, 13(2): 485-499. 28 朱光, 刘蕾, 李凤景. 基于LDA和LSTM模型的研究主题关联与预测研究——以隐私研究为例[J]. 现代情报, 2020, 40(8): 38-50. 29 霍朝光, 霍帆帆, 董克. 基于LSTM神经网络的学科主题热度预测模型[J]. 图书情报知识, 2021, 38(2): 25-34. 30 廖含月, 曾剑平, 吴承荣. 一种多模型集成的网络论坛流量预测模型[J]. 计算机工程, 2020, 46(12): 60-66, 72. 31 袁军鹏. 一种两阶段数量组合预测方法及实证[J]. 情报学报, 2014, 33(9): 910-915. 32 刘素兵, 刘海明, 苗佳晶, 等. 图书借阅量的灰色回归组合模型研究[J]. 云南民族大学学报(自然科学版), 2010, 19(3): 170-172. 33 是沁, 李阳, 裴雷, 等. 基于Blending集成学习的专题数据库文本资源分类方法研究与实现[J]. 情报理论与实践, 2022, 45(10): 169-175. 34 聂秀萍, 谢能付, 吴赛赛, 等. 基于机器学习方法的动物遗传与育种学科热点趋势预测[J]. 农业展望, 2020, 16(1): 101-105. 35 王鑫, 吴际, 刘超, 等. 基于LSTM循环神经网络的故障时间序列预测[J]. 北京航空航天大学学报, 2018, 44(4): 772-784. 36 郑莉, 段冬梅, 陆凤彬, 等. 我国猪肉消费需求量集成预测——基于ARIMA、VAR和VEC模型的实证[J]. 系统工程理论与实践, 2013, 33(4): 918-925. 37 汪跃春, 胡敏. h指数与发文量、篇均引文量关系模型的验证与评价[J]. 情报杂志, 2011, 30(10): 49-54. 38 应倩, 夏庆民, 戴丽琼, 等. 医学期刊h指数与影响因子、总被引频次的相关性分析[J]. 中国科技期刊研究, 2012, 23(2): 232-234. 39 唐葆君, 申程. 欧洲二氧化碳期货市场有效性分析[J]. 北京理工大学学报(社会科学版), 2012, 14(1): 15-19. 40 陈宏, 马学俊. 中美贸易摩擦的经济影响分析——基于GTAP模型[J]. 扬州大学学报(人文社会科学版), 2019, 23(6): 53-63. 41 Song Y H, Cao J Y. An ARIMA-based study of bibliometric index prediction[J]. Aslib Journal of Information Management, 2021, 74(1): 94-109. |
|
|
|