|
|
Do Distance Factors Affect International Collaboration in Different Subfields Equally? Evidence from Computer Science |
Zhao Yi, Zhang Chengzhi, Xi Haixu |
Department of Information Management, School of Economics & Management, Nanjing University of Science & Technology, Nanjing 210094 |
|
|
Abstract Understanding the distance factors that influence international scientific collaboration is crucial for enhancing these collaborative efforts. However, previous studies have mostly focused on the investigation of top-level disciplines, ignoring the heterogeneity of distance factors affecting international collaboration in different subfields; therefore, the results of these studies cannot provide a basis for formulating refined policies. From a comparative perspective, this study analyzed the temporal and spatial patterns of international collaboration in the different subfields of computer science based on computer science publication records published by 187 countries between 1990 and 2019 from the database of DBLP computer science bibliography. Subsequently, we used a zero-inflated beta regression model to reveal the influence of six factors on international collaboration for a large set of countries, by different subfields, and over time. From the perspective of the spatio-temporal distribution of international collaboration, using artificial intelligence, a representative subfield of computer science, as an example, this study shows that the early stage of high-intensity collaborative relationships is mainly dominated by the United States. Countries, including China and Singapore, have become increasingly involved in artificial intelligence research over time, and the pattern of international collaboration has shifted from “one strong and multipolar” to “multipolar collaboration”. In addition, from the results of our regression analysis, we identify that geographical distance, cognitive distance, and economic distance obstruct international collaboration in all subfields, with cognitive distance having the highest impact, while cultural distance, degree of company participation, and political distance have significant negative effects only in some subfields. From the temporal dimension, the marginal effect of geographical and cognitive distances on international collaboration has decreased over time, whereas the impact of economic distances has increased.
|
Received: 31 October 2022
|
|
|
|
1 Wuchty S, Jones B F, Uzzi B. The increasing dominance of teams in production of knowledge[J]. Science, 2007, 316(5827): 1036-1039. 2 教育部印发《关于加强高校有组织科研 推动高水平自立自强的若干意见》[EB/OL]. (2022-08-30). http://www.gov.cn/xinwen/2022-08/30/content_5707406.htm. 3 Jiang L, Zhu N B, Yang Z L, et al. The relationships between distance factors and international collaborative research outcomes: a bibliometric examination[J]. Journal of Informetrics, 2018, 12(3): 618-630. 4 Wagner C S, Whetsell T A, Leydesdorff L. Growth of international collaboration in science: revisiting six specialties[J]. Scientometrics, 2017, 110(3): 1633-1652. 5 宋志红, 郭莹, 李冬梅. 国际合著提高了中国内地学者的科研产出吗?——基于倾向得分分层法的实证研究[J]. 情报杂志, 2018, 37(4): 80-85. 6 李文聪, 何静, 董纪昌. 国际合作与海外经历对科研人员论文质量的影响——以生命科学为例[J]. 管理评论, 2018, 30(11): 68-75. 7 Wagner C S, Whetsell T A, Mukherjee S. International research collaboration: novelty, conventionality, and atypicality in knowledge recombination[J]. Research Policy, 2019, 48(5): 1260-1270. 8 Leimu R, Koricheva J. What determines the citation frequency of ecological papers?[J]. Trends in Ecology & Evolution, 2005, 20(1): 28-32. 9 Ribeiro L C, Rapini M S, Silva L A, et al. Growth patterns of the network of international collaboration in science[J]. Scientometrics, 2018, 114(1): 159-179. 10 Parreira M R, Machado K B, Logares R, et al. The roles of geographic distance and socioeconomic factors on international collaboration among ecologists[J]. Scientometrics, 2017, 113(3): 1539-1550. 11 Fernández A, Ferrándiz E, León M D. Are organizational and economic proximity driving factors of scientific collaboration? Evidence from Spanish universities, 2001-2010[J]. Scientometrics, 2021, 126(1): 579-602. 12 Gervedink Nijhuis C J, Voogt J M, Pieters J M. The cultural complexity of international collaboration: conditions for sustainable curriculum development in Ghana[J]. International Journal of Intercultural Relations, 2012, 36(5): 647-658. 13 Avdeev S. International collaboration in higher education research: a gravity model approach[J]. Scientometrics, 2021, 126(7): 5569-5588. 14 Tang X L, Li X, Ma F C. Internationalizing AI: evolution and impact of distance factors[J]. Scientometrics, 2022, 127(1): 181-205. 15 徐家天泽, 程如烟, 姜桂兴. 基于合著论文的中国高水平国际合作发展趋势研究——以人工智能领域为例[J]. 中国科技论坛, 2022(6): 84-89. 16 贾茜, 李亚婷, 张斌. 科学合作的形成及其影响因素[J]. 情报理论与实践, 2014, 37(6): 40-45. 17 Plotnikova T, Rake B. Collaboration in pharmaceutical research: exploration of country-level determinants[J]. Scientometrics, 2014, 98(2): 1173-1202. 18 Henriksen D. The rise in co-authorship in the social sciences (1980-2013)[J]. Scientometrics, 2016, 107(2): 455-476. 19 Abramo G, D'Angelo C A, Di Costa F. Revealing the scientific comparative advantage of nations: common and distinctive features[J]. Journal of Informetrics, 2022, 16(1): 101244. 20 Vieira E S, Cerdeira J, Teixeira A A C. Which distance dimensions matter in international research collaboration? A cross-country analysis by scientific domain[J]. Journal of Informetrics, 2022, 16(2): 101259. 21 Leahey E. From sole investigator to team scientist: trends in the practice and study of research collaboration[J]. Annual Review of Sociology, 2016, 42: 81-100. 22 Kuld L, O’Hagan J. Rise of multi-authored papers in economics: demise of the ‘lone star’ and why?[J]. Scientometrics, 2018, 114(3): 1207-1225. 23 Muriithi P, Horner D, Pemberton L. Factors contributing to adoption and use of information and communication technologies within research collaborations in Kenya[J]. Information Technology for Development, 2016, 22(sup1): 84-100. 24 张玲玲, 王蝶, 张利斌. 跨学科性与团队合作对大科学装置科学效益的影响研究[J]. 管理世界, 2019, 35(12): 199-212. 25 Xu J, Bu Y, Ding Y, et al. Understanding the formation of interdisciplinary research from the perspective of keyword evolution: a case study on joint attention[J]. Scientometrics, 2018, 117(2): 973-995. 26 赵康杰, 吴亚君, 刘星晨. 中国创新合作网络的演进特征及影响因素研究——以SCI论文合作为例[J]. 科研管理, 2022, 43(7): 96-105. 27 Gui Q C, Liu C L, Du D B. International knowledge flows and the role of proximity[J]. Growth and Change, 2018, 49(3): 532-547. 28 Cairncross F. The death of distance[J]. RSA Journal, 2002, 149(5502): 40-42. 29 Brucks M S, Levav J. Virtual communication curbs creative idea generation[J]. Nature, 2022, 605(7908): 108-112. 30 Ponds R, Van Oort F, Frenken K. The geographical and institutional proximity of research collaboration[J]. Papers in Regional Science, 2007, 86(3): 423-443. 31 古耀杰, 任艳珍. 人力资本、R&D、能源消耗与经济增长关系研究——中国经济增长驱动因素的实证分析[J]. 经济问题, 2015(2): 25-30. 32 Nagpaul P S. Exploring a pseudo-regression model of transnational cooperation in science[J]. Scientometrics, 2003, 56(3): 403-416. 33 冉从敬, 宋凯, 何梦婷, 等. 校企合作背景下高校前沿科研团队探测模型构建——以区块链技术领域为例[J]. 现代情报, 2020, 40(6): 46-54. 34 Whetsell T A, Dimand A M, Jonkers K, et al. Democracy, complexity, and science: exploring structural sources of national scientific performance[J]. Science and Public Policy, 2021, 48(5): 697-711. 35 Narteh B. Knowledge transfer in developed-developing country interfirm collaborations: a conceptual framework[J]. Journal of Knowledge Management, 2008, 12(1): 78-91. 36 郭冠清. 文化因素对企业经营绩效影响的研究[J]. 中国工业经济, 2006(10): 91-97. 37 席强敏, 李国平, 孙瑜康, 等. 京津冀科技合作网络的演变特征及影响因素[J]. 地理学报, 2022, 77(6): 1359-1373. 38 Cohen W M, Levinthal D A. Absorptive capacity: a new perspective on learning and innovation[J]. Administrative Science Quarterly, 1990, 35(1): 128-152. 39 Boschma R. Proximity and innovation: a critical assessment[J]. Regional Studies, 2005, 39(1): 61-74. 40 Walther O, Klatt M, Boedeltje F. Mapping international co-authorship networks in border studies (1986–2018)[J]. Journal of Borderlands Studies, 2021, 36(4): 653-674. 41 Manjunath A, Li H Y, Song S C, et al. Comprehensive analysis of 2.4 million patent-to-research citations maps the biomedical innovation and translation landscape[J]. Nature Biotechnology, 2021, 39(6): 678-683. 42 Frank M R, Wang D S, Cebrian M, et al. The evolution of citation graphs in artificial intelligence research[J]. Nature Machine Intelligence, 2019, 1(2): 79-85. 43 Zheng J, Zhao Z Y, Zhang X, et al. International scientific and technological collaboration of China from 2004 to 2008: a perspective from paper and patent analysis[J]. Scientometrics, 2012, 91(1): 65-80. 44 Luukkonen T, Tijssen R J W, Persson O, et al. The measurement of international scientific collaboration[J]. Scientometrics, 1993, 28(1): 15-36. 45 Hofstede G. Culture’s recent consequences: using dimension scores in theory and research[J]. International Journal of Cross Cultural Management, 2001, 1(1): 11-17. 46 贺超城, 吴江, 魏子瑶, 等. 科研合作中机构间科研主导力及邻近性机理——以中国生物医学领域为例[J]. 情报学报, 2020, 39(2): 148-157. 47 贺灿飞, 李文韬. 中国国际科研合作网络的时空演化特征与驱动力[J]. 中国软科学, 2022(7): 70-81. |
|
|
|