|
|
Identification of Sleeping Beauties in Altmetrics |
Xiang Fei1, Chen Huafang1, Shen Tong1,2, Cao Guang3, Liu Yan1 |
1.School of Medicine and Health Management, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030 2.Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030 3.Zhejiang Provincial People’s Hospital, Hangzhou 310014 |
|
|
Abstract In essence, Altmetrics (alternative metrics) and citations are both measures of the impact of academic achievements; therefore, the “sleeping beauties” (SBs) that appear in citations also appear in Altmetrics. Those based on Altmetrics (A-SBs), which are initially unknown, resulting in a waste of knowledge, are of great value. Realizing the early prediction of A-SBs can improve article utilization, enhance public wisdom, and reflect the public’s attention. Developing a method to identify SBs is the first step to realizing their early prediction. The two most important features of A-SBs are a long sleeping time and sudden increase in attention. According to quartiles and Bcp, an Altmetrics sleeping beauty (ASB) index was developed to identify A-SBs with the core of these features. This study included the articles with the top 1% of the attention as high-attention articles, which were used to test the effect of the ASB index. The effect of the ASB index was analyzed via the comparison of the accumulation curves of attention and index features of 10 articles with the highest, median, and lowest ASB values. The results indicated that the ASB index is effective in the recognition of A-SBs.
|
Received: 27 September 2022
|
|
|
|
1 万虹育, 赵纪东, 刘文浩. 社交媒体视角下的学术信息传播模式研究[J]. 图书馆理论与实践, 2020(3): 79-84, 117. 2 Barber B. Resistance by scientists to scientific discovery[J]. Science, 1961, 134(3479): 596-602. 3 Stent G S. Prematurity and uniqueness in scientific discovery[J]. Scientific American, 1972, 227(6): 84-93. 4 Garfield E. Premature discovery or delayed recognition—why?[J]. Current Contents, 1980, 4(21): 488-493. 5 van Raan A F J. Sleeping beauties in science[J]. Scientometrics, 2004, 59(3): 467-472. 6 宗张建. 睡美人文献识别方法研究进展[J]. 图书情报工作, 2019, 63(16): 132-142. 7 Garfield E. Delayed recognition in scientific discovery: citation frequency analysis aids the search for case histories[J]. Current Contents, 1989, 12(23): 3-9. 8 Costas R, van Leeuwen T N, van Raan A F J. Is scientific literature subject to a ‘sell-by-date’? A general methodology to analyze the ‘durability’ of scientific documents[J]. Journal of the American Society for Information Science and Technology, 2010, 61(2): 329-339. 9 Wang J. Citation time window choice for research impact evaluation[J]. Scientometrics, 2013, 94(3): 851-872. 10 杜建, 武夷山. 基于被引速率指标识别睡美人文献及其“王子”——以2014年诺贝尔化学奖得主Stefan Hell的睡美人文献为例[J]. 情报学报, 2015, 34(5): 508-521. 11 Li J, Shi D B, Zhao S X, et al. A study of the “heartbeat spectra” for “sleeping beauties”[J]. Journal of Informetrics, 2014, 8(3): 493-502. 12 Sun J J, Min C, Li J. A vector for measuring obsolescence of scientific articles[J]. Scientometrics, 2016, 107(2): 745-757. 13 Ke Q, Ferrara E, Radicchi F, et al. Defining and identifying Sleeping Beauties in science[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(24): 7426-7431. 14 杜建, 武夷山. 睡美人与王子文献的识别方法研究[J]. 图书情报工作, 2015, 59(19): 84-92. 15 Du J, Wu Y S. A parameter-free index for identifying under-cited Sleeping Beauties in science[J]. Scientometrics, 2018, 116(2): 959-971. 16 Teixeira A A C, Vieira P C, Abreu A P. Sleeping Beauties and their princes in innovation studies[J]. Scientometrics, 2017, 110(2): 541-580. 17 唐洁, 曾静静. 应用变异系数识别睡美人文献研究[J]. 图书情报工作, 2021, 65(6): 93-101. 18 宋呈玉, 李秀霞, 谢瑞霞, 等. 基于二次函数曲线拟合的睡美人文献识别研究[J]. 情报杂志, 2018, 37(6): 119-123, 207. 19 侯剑华, 张雪雯. 基于累积引文的科学睡美人识别方法研究[J]. 情报学报, 2020, 39(9): 949-962. 20 Hou J H, Yang X C. Social media-based sleeping beauties: defining, identifying and features[J]. Journal of Informetrics, 2020, 14(2): 101012. 21 Hou J H, Li H, Zhang Y. Identifying the princes base on Altmetrics: an awakening mechanism of sleeping beauties from the perspective of social media[J]. PLoS One, 2020, 15(11): e0241772. 22 由庆斌, 韦博, 汤珊红. 基于补充计量学的论文影响力评价模型构建[J]. 图书情报工作, 2014, 58(22): 5-11. 23 赵蓉英, 郭凤娇, 谭洁. 基于Altmetrics的学术论文影响力评价研究——以汉语言文学学科为例[J]. 中国图书馆学报, 2016, 42(1): 96-108. 24 余厚强. 替代计量指标与引文量相关性的大规模跨学科研究——数值类型、指标种类与用户类别的影响[J]. 情报学报, 2017, 36(6): 606-617. 25 Thelwall M, Nevill T. Could scientists use Altmetric.com scores to predict longer term citation counts?[J]. Journal of Informetrics, 2018, 12(1): 237-248. 26 Zhang X, Wang X H, Zhao H K, et al. An effectiveness analysis of altmetrics indices for different levels of artificial intelligence publications[J]. Scientometrics, 2019, 119(3): 1311-1344. 27 魏明坤. 学术论文影响力评价指标相关性及次生影响力系数研究[J]. 情报理论与实践, 2020, 43(5): 85-90. 28 陈华芳, 向菲. Altmetrics在学术论文评价中的特征与优势分析——以医学健康领域为例[J]. 数字图书馆论坛, 2021(2): 19-26. 29 刘运梅, 李长玲, 杜德慧. 时间序列视角下PLOS ALM指标特性识别模型构建与应用[J]. 情报资料工作, 2019, 40(6): 6-15. 30 刘雪立. 基于Web of Science和ESI数据库高被引论文的界定方法[J]. 中国科技期刊研究, 2012, 23(6): 975-978. 31 Altmetric. How is the altmetric attention score calculated?[EB/OL]. (2021-09-21) [2022-03-21]. https://help.altmetric.com/support/solutions/articles/6000233311-how-is-the-altmetric-attention-score-calculated-. 32 李江, 姜明利, 李玥婷. 引文曲线的分析框架研究——以诺贝尔奖得主的引文曲线为例[J]. 中国图书馆学报, 2014, 40(2): 41-49. 33 杜建, 武夷山. “睡美人”文献的重要特征、预测线索与政策启示[J]. 科学学研究, 2018, 36(11): 1938-1945. 34 杜建, 武夷山. 一个用于识别睡美人文献的新的无参数指标——基于“Science”和“Nature”上睡美人文献的验证[J]. 情报理论与实践, 2017, 40(2): 19-25. 35 李贺, 解梦凡, 袁翠敏, 等. 用无参数指标Bcp识别睡美人文献及其作者动态h指数变化规律[J]. 中国图书馆学报, 2018, 44(6): 75-89. 36 张靖雯, 孙建军, 闵超. 引文起飞的定义与量化方法研究[J]. 情报学报, 2019, 38(8): 786-797. 37 Eom Y H, Fortunato S. Characterizing and modeling citation dynamics[J]. PLoS One, 2011, 6(9): e24926. |
|
|
|