|
|
Cross-Domain Recommendation Combining Heterogeneous Information Network Representation Learning |
Yi Ming, Liu Ming, Feng Cuicui |
School of Information Management, Central China Normal University, Wuhan 430079 |
|
|
Abstract The propose of this study was to put forward a cross-domain recommendation model that uses rating information and feature information to solve the data sparseness and user's cold-start problems in a single domain. The heterogeneous network representation learning framework, which focuses on source domain and target domain, was used to generate network embedding via the meta-path and DeepWalk algorithms. Then, personalized nonlinear fusion was used to output the feature information embedding of the source and target domains. Moreover, a neural network was used to generate rating information embedding for users and items by simulating collective matrix factorization (CMF). After that, a mapping function named multilayer perceptron (MLP) was introduced to highlight the differences of user features in different domains. Based on the loss function and learning the parameters of the model, the gradient descent method was used to predict user ratings for items. The experimental results showed that the cross-domain recommendation model combining heterogeneous information network embedding achieved excellent results in improving the recommendation effect and solving the user's cold-start problem on both the Douban and Amazon datasets. In terms of improving the recommendation effect, root mean squared error (RMSE) and mean absolute error (MAE) in the target domain dropped by 1%-15%, and in the source domain they dropped by 1%-19%. In terms of the user's cold-start problem in the target domain, RMSE and MAE dropped by 1%-14%.
|
Received: 14 January 2021
|
|
|
|
1 Berkovsky S, Kuflik T, Ricci F. Mediation of user models for enhanced personalization in recommender systems[J]. User Modeling and User-Adapted Interaction, 2008, 18(3): 245-286. 2 Berkovsky S, Kuflik T, Ricci F. Cross-domain mediation in collaborative filtering[C]// Proceedings of the International Conference on User Modeling. Heidelberg: Springer, 2007: 355-359. 3 Li B, Yang Q, Xue X Y. Can movies and books collaborate?: cross-domain collaborative filtering for sparsity reduction[C]// Proceedings of the 21st International Jont Conference on Artifical Intelligence. San Francisco: Morgan Kaufmann Publishers, 2009: 2052-2057. 4 Singh A P, Gordon G J. Relational learning via collective matrix factorization[C]// Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2008: 650-658. 5 陈文珺, 杨佳佳. 基于共享知识迁移学习的跨领域推荐研究[J]. 情报科学, 2020, 38(6): 126-132. 6 Zhu F, Wang Y, Chen C C, et al. A deep framework for cross-domain and cross-system recommendations[C]// Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2018: 3711-3717. 7 Gao C, Chen X N, Feng F L, et al. Cross-domain recommendation without sharing user-relevant data[C]// Proceedings of the World Wide Web Conference. New York: ACM Press, 2019: 491-502. 8 Hu G N, Zhang Y, Yang Q. CoNet: collaborative cross networks for cross-domain recommendation[C]// Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM Press, 2018: 667-676. 9 He X N, Liao L Z, Zhang H W, et al. Neural collaborative filtering[C]// Proceedings of the 26th International Conference on World Wide Web. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2017: 173-182. 10 Vijaikumar M, Shevade S, Murty M N. Neural cross-domain collaborative filtering with shared entities[C]// Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Cham: Springer, 2020: 729-745. 11 Kazama M, Varga I. Cross domain recommendation using vector space transfer learning[C]// Proceedings of the Poster Track of the 10th ACM Conference on Recommender Systems. CEUR-WS, 2016: paper 04. 12 Man T, Shen H W, Jin X L, et al. Cross-domain recommendation: an embedding and mapping approach[C]// Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017: 2464-2470. 13 涂存超, 杨成, 刘知远, 等. 网络表示学习综述[J]. 中国科学: 信息科学, 2017, 47(8): 980-996. 14 Perozzi B, Al-Rfou R, Skiena S. DeepWalk: online learning of social representations[C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2014: 701-710. 15 Grover A, Leskovec J. node2vec: scalable feature learning for networks[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2016: 855-864. 16 Tang J, Qu M, Wang M Z, et al. LINE: large-scale information network embedding[C]// Proceedings of the 24th International Conference on World Wide Web. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2015: 1067-1077. 17 Wang D X, Cui P, Zhu W W. Structural deep network embedding[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2016: 1225-1234. 18 周慧, 赵中英, 李超. 面向异质信息网络的表示学习方法研究综述[J]. 计算机科学与探索, 2019, 13(7): 1081-1093. 19 Chang S Y, Han W, Tang J L, et al. Heterogeneous network embedding via deep architectures[C]// Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2015: 119-128. 20 Dong Y X, Chawla N V, Swami A. metapath2vec: scalable representation learning for heterogeneous networks[C]// Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2017: 135-144. 21 Zhang D K, Yin J, Zhu X Q, et al. MetaGraph2Vec: complex semantic path augmented heterogeneous network embedding[C]// Proceedings of the 22nd Pacific-Asia Conference on Knowledge Discovery and Data Mining. Cham: Springer, 2018: 196-208. 22 Zhao H, Yao Q M, Li J D, et al. Meta-graph based recommendation fusion over heterogeneous information networks[C]// Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2017: 635-644. 23 Fu T Y, Lee W C, Lei Z. HIN2Vec: explore meta-paths in heterogeneous information networks for representation learning[C]// Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. New York: ACM Press, 2017: 1797-1806. 24 刘云枫, 孙平, 葛志远. 基于网络表示学习的作者合作推荐模型[J]. 情报科学, 2020, 38(2): 75-80. 25 林原, 王凯巧, 刘海峰, 等. 网络表示学习在学者科研合作预测中的应用研究[J]. 情报学报, 2020, 39(4): 367-373. 26 Zheng J, Liu J, Shi C, et al. Recommendation in heterogeneous information network via dual similarity regularization[J]. International Journal of Data Science and Analytics, 2017, 3(1): 35-48. 27 Shi C, Hu B B, Zhao W X, et al. Heterogeneous information network embedding for recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 31(2): 357-370. 28 肖璐, 赵之辉, 陈果. 全局视角下的网络社区多元知识关联挖掘[J]. 图书情报工作, 2020, 64(6): 100-107. 29 Mnih A, Salakhutdinov R R. Probabilistic matrix factorization[C]// Proceedings of the 20th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates, 2007: 1257-1264. 30 Hu L, Cao J, Xu G D, et al. Personalized recommendation via cross-domain triadic factorization[C]// Proceedings of the 22nd International Conference on World Wide Web. New York: ACM Press, 2013: 595-606. 31 吴晓英. 基于概率矩阵分解的馆藏数字资源智能推荐方法研究[J]. 情报理论与实践, 2014, 37(11): 94-97. |
|
|
|