|
|
Knowledge Discovery and Development Path Identification Based on Time-Expanded Network: Information Management Area as an Example |
Wang Zongshui1,2, Liu Haiyan3, Liu Wei4, Zhao Hong4, Zhang Jian1 |
1.School of Economics and Management, Beijing Information Science and Technology University, Beijing 100192 2.School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100190 3.Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190 4.School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190 |
|
|
Abstract Text mining and network analysis have become important tools for knowledge discovery. This study proposes a method based on time-expended network considering prior related research. First, through stage division and keyword time-expanded network construction, this study assigns arcs value and carries out calculation of node-arcs matrix to detect the shortest paths. Next, it ranks the relative importance of keywords based on the closeness centrality and discovers the main knowledge development paths by matching the nodes of shortest paths within time-expanded network. In addition, it takes 43,624 articles of 24 journals in the information management field from 1979 to 2018 as samples to check the fitness of this method. The development period is divided into four equal slices with 10 years, which is followed by extraction and statistical analysis of the keywords by CiteSpace software. The knowledge evolution paths are found based on the time-expanded network and nodes’ closeness centrality. The results show that the knowledge development of information management research mainly includes five main paths, such as management, information system, innovation, design, and implementation; these paths connect with each other through technology, model and method, diffusion and knowledge, etc. which formed the knowledge network of information management research.
|
Received: 21 June 2019
|
|
|
|
1 Han J W, Kamber M. Data mining: concepts and techniques[M]. 2th Edition. San Francisco: Morgan Kaufmann Publishers, 2005. 2 黄清和, 尹琪. 知识发现与决策支持[J]. 南开管理评论, 2002, 5(3): 76-78. 3 Du J A, Li P X, Guo Q Y, et al. Measuring the knowledge translation and convergence in pharmaceutical innovation by funding-science-technology-innovation linkages analysis[J]. Journal of Informetrics, 2019, 13(1): 132-148. 4 Matas N, Martin?i?-Ip?i? S, Me?trovi? A. Extracting domain knowledge by complex networks analysis of Wikipedia entries[C]// Proceedings of the 38th International Convention on Information and Communication Technology, Electronics and Microelectronics. IEEE, 2015: 1622-1627. 5 唐洪婷, 李志宏. 基于超网络演化模型的社区知识发现与分析[J]. 系统工程理论与实践, 2018, 38(3): 765-776. 6 Manco G, Rullo P, Gallucci L, et al. Rialto: a knowledge discovery suite for data analysis[J]. Expert Systems with Applications, 2016, 59: 145-164. 7 Liu X A, Jiang T T, Ma F C. Collective dynamics in knowledge networks: emerging trends analysis[J]. Journal of Informetrics, 2013, 7(2): 425-438. 8 Chen C M. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of the American Society for Information Science and Technology, 2006, 57(3): 359-377. 9 李军, 黄安强, 张玲玲, 等. 基于意外度的关联规则深层知识发现及应用研究[J]. 管理评论, 2012, 24(3): 108-114. 10 唐洪婷, 李志宏. 基于hMETIS与FP-Growth的协同创新社区领域知识发现方法[J]. 系统工程理论与实践, 2018, 38(8): 2068-2078. 11 Gopinath Bharathi A K B, Singh A, Tucker C S, et al. Knowledge discovery of game design features by mining user-generated feedback[J]. Computers in Human Behavior, 2016, 60: 361-371. 12 Sato Y, Izui K, Yamada T, et al. Data mining based on clustering and association rule analysis for knowledge discovery in multiobjective topology optimization[J]. Expert Systems with Applications, 2019, 119: 247-261. 13 Xiao Y, Lu L Y Y, Liu J S, et al. Knowledge diffusion path analysis of data quality literature: a main path analysis[J]. Journal of Informetrics, 2014, 8(3): 594-605. 14 Ronda-Pupo G A, Guerras-Martin L á. Dynamics of the evolution of the strategy concept 1962-2008: a co-word analysis[J]. Strategic Management Journal, 2012, 33(2): 162-188. 15 阮光册, 夏磊. 基于词共现关系的检索结果知识关联研究[J]. 情报学报, 2017, 36(12): 1247-1254. 16 崔建勋, 安实, 崔娜. 基于时间扩展网络的区域疏散公交路径规划[J]. 华南理工大学学报(自然科学版), 2010, 38(3): 64-69. 17 Ho K, de Weck O L, Hoffman J A, et al. Dynamic modeling and optimization for space logistics using time-expanded networks[J]. Acta Astronautica, 2014, 105(2): 428-443. 18 黄泽汉, 谭跃进, 邓宏钟. 大规模定量传输的时间扩展网络K最短路径算法[J]. 计算机工程与应用, 2008, 44(25): 20-23. 19 Yook D, Heaslip K. Determining appropriate fare levels for distance-based fare structure: considering users’ behaviors in a time-expanded network[J]. Transportation Research Record, 2014, 2415(1): 127-135. 20 Ding C G, Hung W C, Lee M C, et al. Exploring paper characteristics that facilitate the knowledge flow from science to technology[J]. Journal of Informetrics, 2017, 11(1): 244-256. 21 Song M, Heo G E, Ding Y. SemPathFinder: Semantic path analysis for discovering publicly unknown knowledge[J]. Journal of Informetrics, 2015, 9(4): 686-703. 22 王宗水, 赵红, 刘宇, 等. 社会网络研究范式的演化、发展与应用——基于1998~2014年中国社会科学引文数据分析[J]. 情报学报, 2015, 34(12): 1235-1245. 23 Safhi H M, Frikh B, Ouhbi B. Assessing reliability of big data knowledge discovery process[J]. Procedia Computer Science, 2019, 148: 30-36. 24 秦春秀, 杨智娟, 赵捧未, 等. 面向科技文献知识表示的知识元本体模型[J]. 图书情报工作, 2018, 62(3): 94-103. 25 Small H, Tseng H, Patek M. Discovering discoveries: Identifying biomedical discoveries using citation contexts[J]. Journal of Informetrics, 2017, 11(1): 46-62. 26 Arji G, Safdari R, Rezaeizadeh H, et al. A systematic literature review and classification of knowledge discovery in traditional medicine[J]. Computer Methods and Programs in Biomedicine, 2019, 168: 39-57. 27 Abrizah A, Erfanmanesh M, Rohani V A, et al. Sixty-four years of informetrics research: productivity, impact and collaboration[J]. Scientometrics, 2014, 101(1): 569-585. 28 Ronda-Pupo G A, Guerras-Martín L á. Collaboration network of knowledge creation and dissemination on management research: ranking the leading institutions[J]. Scientometrics, 2016, 107(3): 917-939. 29 官建成, 郑琦. 中国科技发展的国际地位评估研究[M]. 北京: 中国科学技术出版社, 2015. 30 Wang Z S, Zhao H, Wang Y. Social networks in marketing research 2001-2014: a co-word analysis[J]. Scientometrics, 2015, 105(1): 65-82. 31 刘海燕, 王宗水, 汪寿阳. 我国系统科学与工程研究的演化与发展[J]. 系统工程学报, 2017, 32(3): 289-304, 345. 32 Chen C M. The CiteSpace manual[EB/OL]. (2014-04-12). https://m.sciencenet.cn/home.php?mod=attachment&filename=CiteSpace Manual.pdf&id=52563. 33 Lee J. Strategic risk analysis for information technology outsourcing in hospitals[J]. Information & Management, 2017, 54(8): 1049-1058. 34 Cooper R B, Zmud R W. Information technology implementation research: a technological diffusion approach[J]. Management Science, 1990, 36(2): 123-139. 35 Fernandes C, Ferreira J J, Raposo M L, et al. The dynamic capabilities perspective of strategic management: a co-citation analysis[J]. Scientometrics, 2017, 112(1): 529-555. 36 Shiau W L, Dwivedi Y K, Yang H S. Co-citation and cluster analyses of extant literature on social networks[J]. International Journal of Information Management, 2017, 37(5): 390-399. |
|
|
|