|
|
Automatic Summarization of Book Reviews Based on Fine-Grained Review Mining |
Zhang Chengzhi1, Tong Tiantian1, Zhou Qingqing2 |
1.Department of Information Management, Nanjing University of Science & Technology, Nanjing 210094 2.Department of Network and New Media, Nanjing Normal University, Nanjing 210023 |
|
|
Abstract Mining book reviews can help users understand the content of books and help publishers optimize their marketing strategies. Book review summarization can greatly improve the efficiency of users' access to information, allowing them to quickly understand the main content of reviews by briefly reading a summary. The practice can thus provide users with concise and accurate book review summaries. Existing research on review summaries has mostly adopted methods based on sentence extraction, which neglect to address the fine-grained sentiment information in reviews. In addition, there are obvious differences in the content of reviews among different book review platforms. It is difficult for users to fully understand books through review summaries based on a single platform. In this study, we propose a book review summary model including aspect and content information and design a review summary method based on fine-grained reviews mining. The empirical results show that the review summary generated using the proposed method can provide fine-grained and multi-dimensional book evaluation information.
|
Received: 04 December 2019
|
|
|
|
1 何峻. 我国图书评价现状分析[J]. 大学图书馆学报, 2012, 30(3): 106-110. 2 黄文彬, 倪少康. 多文档自动摘要方法的进展研究[J]. 情报科学, 2017, 35(4): 160-165. 3 祝振媛. 基于信息分类的网络书评多文档自动文摘研究[D]. 南京: 南京大学, 2013. 4 Sharifi B P, Inouye D I, Kalita J K. Summarization of twitter microblogs[J]. The Computer Journal, 2014, 57(3): 378-402. 5 章成志, 童甜甜, 周清清. 整合不同评论平台的图书综合影响力评价研究[J]. 情报学报, 2018, 37(9): 861-873. 6 明拓思宇, 陈鸿昶. 文本摘要研究进展与趋势[J]. 网络与信息安全学报, 2018, 4(6): 1-10. 7 Beineke P, Hastie T, Manning C, et al. Exploring sentiment summarization[C]// Proceedings of the AAAI Spring Symposium on Exploring Attitude and Affect in Text: Theories and Applications. Palo Alto: AAAI Press, 2004: 1-4. 8 Khabiri E, Caverlee J, Hsu C F. Summarizing user-contributed comments[C]// Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media. Palo Alto: AAAI Press, 2011: 534-537. 9 Nishikawa H, Hasegawa T, Matsuo Y, et al. Opinion summarization with integer linear programming formulation for sentence extraction and ordering[C]// Proceedings of the 23rd International Conference on Computational Linguistics: Posters. Stroudsburg: Association for Computational Linguistics, 2010: 910-918. 10 Titov I, McDonald R. A joint model of text and aspect ratings for sentiment summarization[C]// Proceedings of the 2008 Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2008: 308-316. 11 Ma Z Y, Sun A X, Yuan Q, et al. Topic-driven reader comments summarization[C]// Proceedings of the 21st ACM International Conference on Information and Knowledge Management. New York: ACM Press, 2012: 265-274. 12 刘德喜, 万常选. 社会化短文本自动摘要研究综述[J]. 小型微型计算机系统, 2013, 34(12): 2764-2771. 13 Trappey A J C, Trappey C V, Wu C Y. Automatic patent document summarization for collaborative knowledge systems and services[J]. Journal of Systems Science and Systems Engineering, 2009, 18(1): 71-94. 14 Lu Y, Zhai C X, Sundaresan N. Rated aspect summarization of short comments[C]// Proceedings of the 18th International Conference on World Wide Web. New York: ACM Press, 2009: 131-140. 15 Ganesan K, Zhai C X, Han J W. Opinosis: a graph-based approach to abstractive summarization of highly redundant opinions[C]// Proceedings of the 23rd International Conference on Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2010: 340-348. 16 Ganesan K. Opinion driven decision support system[D]. Chicago: University of Illinois at Urbana-Champaign, 2014. 17 Nguyen T S, Lauw H W, Tsaparas P. Review selection using micro-reviews[J]. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(4): 1098-1111. 18 杨洋. 基于文献计量的中文科技图书影响力评价方法研究[D]. 北京: 中国科学技术信息研究所, 2012. 19 Gorraiz J, Gumpenberger C, Purnell P J. The power of book reviews: a simple and transparent enhancement approach for book citation indexes[J]. Scientometrics, 2014, 98(2): 841-852. 20 Kousha K, Thelwall M. Alternative metrics for book impact assessment: can choice reviews be a useful source?[C]// Proceedings of the 15th International Conference on Scientometrics and Informetrics. 2015: 59-70. 21 Zuccala A A, Verleysen F T, Cornacchia R, et al. Altmetrics for the humanities comparing goodreads reader ratings with citations to history books[J]. Aslib Journal of Information Management, 2015, 67(3): 320-336. 22 Kousha K, Thelwall M. Can Amazon.com reviews help to assess the wider impacts of books?[J]. Journal of the Association for Information Science and Technology, 2016, 67(3): 566-581. 23 Zhou Q Q, Zhang C Z, Zhao S X, et al. Measuring book impact based on the multi-granularity online review mining[J]. Scientometrics, 2016, 107(3): 1435-1455. 24 周清清, 章成志. 在线用户评论细粒度属性抽取[J]. 情报学报, 2017, 36(5): 484-493. 25 Goldberg Y, Levy O. word2vec explained: deriving Mikolovet al.'s negative-sampling word-embedding method[OL]. (2014-02-15). https://arxiv.org/pdf/1402.3722.pdf. 26 Frey B J, Dueck D. Clustering by passing messages between data points[J]. Science, 2007, 315(5814): 972-976. 27 余珊珊, 苏锦钿, 李鹏飞. 基于改进的TextRank的自动摘要提取方法[J]. 计算机科学, 2016, 43(6): 240-247. 28 Choice: current reviews for academic libraries-wikipedia[EB/OL]. [2018-08-11]. https://en.wikipedia.org/wiki/. 29 Amazon-wikipedia[EB/OL]. [2018-08-11]. https://en.wikipedia.org/wiki/Amazon. 30 周清清. 基于多源异构数据的图书影响力评价研究[D]. 南京: 南京理工大学, 2018. 31 Blei D M, Ng A Y, Jordan M I. Latent Dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3(1): 993-1022. 32 Pietquin O, Hastie H. A survey on metrics for the evaluation of user simulations[J]. The Knowledge Engineering Review, 2013, 28(1): 59-73. |
|
|
|