|
|
A Network Evolution Model for Domain Knowledge Driven by Multiple Factors: Following Suit, Conservatism, and Innovation |
Chen Guo1,2, Zhao Yixin3 |
1.Department of Information Management, Nanjing University of Science and Technology, Nanjing 210094 2.Jiangsu Science and Technology Collaborative Innovation Center of Social Public Safety, Nanjing210094 3.Institute of Software, Chinese Academy of Sciences, Beijing 100190 |
|
|
Abstract Current complex network models, such as Barabasi-Albert scale-free models and Watts-Strogatz small-world networks, cannot imitate many structural characteristics of the real domain knowledge network. Therefore, it is necessary to explore a new network model suitable for the evolution of domain knowledge. Based on the example of a keyword network, this study discusses the process of domain knowledge generation and its multiple influencing factors. The study then proposes a new network evolution model with keyword modules as basic units, which comprehensively considers following suit, conservatism, and innovation as influencing factors. A simulation experiment showed that the model was effective in fitting the structural characteristics of domain knowledge networks at both macro and micro levels. A further simulation experiment revealed the impacts of following suit and conservatism on growth of new knowledge and knowledge gathering. The proposed model could provide quantitative foundations for future studies on domain knowledge analysis.
|
Received: 25 September 2018
|
|
|
|
1 唐果媛, 张薇. 国内外共词分析法研究的发展与分析[J]. 图书情报工作, 2014, 58(22): 138-145. 2 王晓光. 科学知识网络的形成与演化(Ⅱ): 共词网络可视化与增长动力学[J]. 情报学报, 2010, 29(2): 314-322. 3 Barabási A L,Albert R. Emergence of scaling in random networks[J]. Science ,1999, 286(5439): 509-512. 4 Watts D J,Strogatz S H. Collective dynamics of ‘small-world’ networks[J]. Nature, 1998, 393(6684): 440-442. 5 Clauset A,Moore C,Newman M E J. Hierarchical structure and the prediction of missing links in networks[J]. Nature, 2008, 453(7191): 98-101. 6 Ravasz E,Barabási A L. Hierarchical organization in complex networks[J]. Physical Review E, 2003, 67(2): 026112. 7 胡昌平, 陈果. 领域知识网络的层次结构与微观形态探证——基于k-core层次划分的共词分析方法[J]. 情报学报, 2014, 33(2): 130-139. 8 Milo R. Network motifs: Simple building blocks of complex networks[J]. Science, 2002, 298(5594): 824-827. 9 陈倩. 复杂网络模体研究[D]. 上海: 上海大学, 2008. 10 缪莉莉, 韩传峰, 刘亮, 等. 基于模体的科学家合作网络基元特征分析[J]. 科学学研究, 2012, 30(10): 1468-1475. 11 邱均平, 王菲菲. 基于共现与耦合的馆藏文献资源深度聚合研究探析[J]. 中国图书馆学报, 2013, 39(3): 25-33. 12 马瑞敏, 倪超群. 基于作者同被引分析的我国图书情报学知识结构及其演变研究[J]. 中国图书馆学报, 2011, 37(6): 17-26. 13 张斌, 贾茜. 我国图书情报学的认知结构及其演化[J]. 中国图书馆学报, 2014, 40(4): 30-47. 14 白如江, 冷伏海. k-clique社区知识创新演化方法研究[J]. 图书情报工作, 2013, 57(17): 86-94. 15 张斌, 李亚婷. 知识网络演化模型研究述评[J]. 中国图书馆学报, 2016, 42(5): 85-101. 16 Liu Z H,Lai Y C,YeN, et al. Connectivity distribution and attack tolerance of general networks with both preferential and random attachments[J]. Physics Letters A, 2002, 303(5-6): 337-344. 17 马费成, 刘向. 知识网络的演化(Ⅲ): 连接机制[J]. 情报学报, 2011, 30(10): 1015-1021. 18 刘向, 马费成. 科学知识网络的演化与动力——基于科学引证网络的分析[J]. 管理科学学报, 2012, 15(1): 87-94. 19 Li X,Chen G R. A local-world evolving network model[J]. Physica A: Statistical Mechanics and Its Applications, 2003, 328(1-2): 274-286. 20 Pan Z F,Li X,Wang X F. Generalized local-world models for weighted networks[J]. Physical Review E, 2006, 73(5): 056109. 21 Li M H,Wu J S,Wang D H, et al. Evolving model of weighted networks inspired by scientific collaboration networks[J]. Physica A: Statistical Mechanics and Its Applications, 2007, 375(1): 355-364. 22 安宁, 滕广青, 白淑春, 等. 基于网络Hub的领域核心知识涌现研究[J]. 图书情报工作, 2017, 61(18): 98-106. 23 滕广青. 基于频度演化的领域知识关联关系涌现[J]. 中国图书馆学报, 2018, 44(3): 79-95. 24 刘雅姝, 滕广青, 王东艳, 等. 基于知识网络的标签层级演化研究[J]. 图书情报工作, 2017, 61(11): 13-20. 25 滕广青. Folksonomy模式中紧密型领域知识群落动态演化研究[J]. 中国图书馆学报, 2016, 42(4): 51-63. 26 滕广青. 关联驱动的领域知识群落生长[J]. 中国图书馆学报, 2017, 43(3): 58-71. 27 陈果, 胡昌平. 科研领域关键词网络的结构特征与启示——基于图情学科的实证研究[J]. 现代图书情报技术, 2014(7-8): 84-91. 28 Watts D J. Small worlds: The dynamics of networks between order and randomness[M]. Princeton: Princeton University Press, 1999. 29 胡昌平, 陈果. 科技论文关键词特征及其对共词分析的影响[J]. 情报学报, 2014, 33(1): 23-32. 30 Milojevi? S. Quantifying the cognitive extent of science[J]. Journal of Informetrics, 2015, 9(4): 962-973. 31 Lewis T G. 网络科学: 原理与应用[M]. 陈向阳, 巨修练, 译. 北京: 机械工业出版社, 2011. 32 吕天阳, 谢文艳, 郑纬民, 等. 加权复杂网络社团的评价指标及其发现算法分析[J]. 物理学报, 2012, 61(21): 145-154. |
|
|
|